mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-21 06:33:41 +00:00
- **Description:** Add [TileDB](https://tiledb.com) vectorstore implementation. TileDB offers ANN search capabilities using the [TileDB-Vector-Search](https://github.com/TileDB-Inc/TileDB-Vector-Search) module. It provides serverless execution of ANN queries and storage of vector indexes both on local disk and cloud object stores (i.e. AWS S3). More details in: - [Why TileDB as a Vector Database](https://tiledb.com/blog/why-tiledb-as-a-vector-database) - [TileDB 101: Vector Search](https://tiledb.com/blog/tiledb-101-vector-search) - **Twitter handle:** @tiledb
179 lines
4.7 KiB
Plaintext
179 lines
4.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "25bce5eb-8599-40fe-947e-4932cfae8184",
|
|
"metadata": {},
|
|
"source": [
|
|
"# TileDB\n",
|
|
"\n",
|
|
"> [TileDB](https://github.com/TileDB-Inc/TileDB) is a powerful engine for indexing and querying dense and sparse multi-dimensional arrays.\n",
|
|
"\n",
|
|
"> TileDB offers ANN search capabilities using the [TileDB-Vector-Search](https://github.com/TileDB-Inc/TileDB-Vector-Search) module. It provides serverless execution of ANN queries and storage of vector indexes both on local disk and cloud object stores (i.e. AWS S3).\n",
|
|
"\n",
|
|
"More details in:\n",
|
|
"- [Why TileDB as a Vector Database](https://tiledb.com/blog/why-tiledb-as-a-vector-database)\n",
|
|
"- [TileDB 101: Vector Search](https://tiledb.com/blog/tiledb-101-vector-search)\n",
|
|
"\n",
|
|
"This notebook shows how to use the `TileDB` vector database."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f45f46f2-7229-4859-9797-30bbead1b8e0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip install tiledb-vector-search"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2f65caa9-8383-409a-bccb-6e91fc8d5e8f",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Basic Example"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c96d4fe0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.document_loaders import TextLoader\n",
|
|
"from langchain.embeddings import HuggingFaceEmbeddings\n",
|
|
"from langchain.text_splitter import CharacterTextSplitter\n",
|
|
"from langchain.vectorstores import TileDB\n",
|
|
"\n",
|
|
"raw_documents = TextLoader(\"../../modules/state_of_the_union.txt\").load()\n",
|
|
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
|
"documents = text_splitter.split_documents(raw_documents)\n",
|
|
"embeddings = HuggingFaceEmbeddings()\n",
|
|
"db = TileDB.from_documents(\n",
|
|
" documents, embeddings, index_uri=\"/tmp/tiledb_index\", index_type=\"FLAT\"\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b0a6797c-2bb0-45db-a636-5d2437f7a4c0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
|
"docs = db.similarity_search(query)\n",
|
|
"docs[0].page_content"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c4c4e06d-6def-44ce-ac9a-4c01673c29a2",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Similarity search by vector"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1eb72610-d451-4158-880c-9f0d45fa5909",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"embedding_vector = embeddings.embed_query(query)\n",
|
|
"docs = db.similarity_search_by_vector(embedding_vector)\n",
|
|
"docs[0].page_content"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "d33588d4-67c2-4bd3-b251-76ae783cbafb",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Similarity search with score"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1a41e382-0336-4e6d-b2ef-44cc77db2696",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"docs_and_scores = db.similarity_search_with_score(query)\n",
|
|
"docs_and_scores[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "57f930f2-41a0-4795-ad9e-44a33c8f88ec",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Maximal Marginal Relevance Search (MMR)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4790e437-3207-45cb-b121-d857ab5aabd8",
|
|
"metadata": {},
|
|
"source": [
|
|
"In addition to using similarity search in the retriever object, you can also use `mmr` as retriever."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "495754b1-5cdb-4af6-9733-f68700bb7232",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"retriever = db.as_retriever(search_type=\"mmr\")\n",
|
|
"retriever.get_relevant_documents(query)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "e213d957-e439-4bd6-90f2-8909323f5f09",
|
|
"metadata": {},
|
|
"source": [
|
|
"Or use `max_marginal_relevance_search` directly:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "99d928d0-3b79-4588-925e-32230e12af47",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"db.max_marginal_relevance_search(query, k=2, fetch_k=10)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.18"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|