Files
langchain/docs
Chris Papademetrious 305d74c67a core: implement a batch_size parameter for CacheBackedEmbeddings (#18070)
**Description:**

Currently, `CacheBackedEmbeddings` computes vectors for *all* uncached
documents before updating the store. This pull request updates the
embedding computation loop to compute embeddings in batches, updating
the store after each batch.

I noticed this when I tried `CacheBackedEmbeddings` on our 30k document
set and the cache directory hadn't appeared on disk after 30 minutes.

The motivation is to minimize compute/data loss when problems occur:

* If there is a transient embedding failure (e.g. a network outage at
the embedding endpoint triggers an exception), at least the completed
vectors are written to the store instead of being discarded.
* If there is an issue with the store (e.g. no write permissions), the
condition is detected early without computing (and discarding!) all the
vectors.

**Issue:**
Implements enhancement #18026.

**Testing:**
I was unable to run unit tests; details in [this
post](https://github.com/langchain-ai/langchain/discussions/15019#discussioncomment-8576684).

---------

Signed-off-by: chrispy <chrispy@synopsys.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-19 18:55:43 +00:00
..
2024-03-03 19:58:58 -08:00
2024-02-08 14:52:26 -08:00
2024-03-09 13:30:48 -08:00

LangChain Documentation

For more information on contributing to our documentation, see the Documentation Contributing Guide