mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 07:41:40 +00:00 
			
		
		
		
	Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
		
			
				
	
	
		
			220 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			220 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import json
 | |
| from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional
 | |
| 
 | |
| import aiohttp
 | |
| from langchain_core.callbacks import (
 | |
|     AsyncCallbackManagerForLLMRun,
 | |
|     CallbackManagerForLLMRun,
 | |
| )
 | |
| from langchain_core.language_models.llms import LLM
 | |
| from langchain_core.outputs import GenerationChunk
 | |
| from langchain_core.pydantic_v1 import Extra, root_validator
 | |
| from langchain_core.utils import get_from_dict_or_env
 | |
| 
 | |
| from langchain_community.utilities.requests import Requests
 | |
| 
 | |
| DEFAULT_MODEL_ID = "google/flan-t5-xl"
 | |
| 
 | |
| 
 | |
| class DeepInfra(LLM):
 | |
|     """DeepInfra models.
 | |
| 
 | |
|     To use, you should have the environment variable ``DEEPINFRA_API_TOKEN``
 | |
|     set with your API token, or pass it as a named parameter to the
 | |
|     constructor.
 | |
| 
 | |
|     Only supports `text-generation` and `text2text-generation` for now.
 | |
| 
 | |
|     Example:
 | |
|         .. code-block:: python
 | |
| 
 | |
|             from langchain_community.llms import DeepInfra
 | |
|             di = DeepInfra(model_id="google/flan-t5-xl",
 | |
|                                 deepinfra_api_token="my-api-key")
 | |
|     """
 | |
| 
 | |
|     model_id: str = DEFAULT_MODEL_ID
 | |
|     model_kwargs: Optional[Dict] = None
 | |
| 
 | |
|     deepinfra_api_token: Optional[str] = None
 | |
| 
 | |
|     class Config:
 | |
|         """Configuration for this pydantic object."""
 | |
| 
 | |
|         extra = Extra.forbid
 | |
| 
 | |
|     @root_validator()
 | |
|     def validate_environment(cls, values: Dict) -> Dict:
 | |
|         """Validate that api key and python package exists in environment."""
 | |
|         deepinfra_api_token = get_from_dict_or_env(
 | |
|             values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN"
 | |
|         )
 | |
|         values["deepinfra_api_token"] = deepinfra_api_token
 | |
|         return values
 | |
| 
 | |
|     @property
 | |
|     def _identifying_params(self) -> Mapping[str, Any]:
 | |
|         """Get the identifying parameters."""
 | |
|         return {
 | |
|             **{"model_id": self.model_id},
 | |
|             **{"model_kwargs": self.model_kwargs},
 | |
|         }
 | |
| 
 | |
|     @property
 | |
|     def _llm_type(self) -> str:
 | |
|         """Return type of llm."""
 | |
|         return "deepinfra"
 | |
| 
 | |
|     def _url(self) -> str:
 | |
|         return f"https://api.deepinfra.com/v1/inference/{self.model_id}"
 | |
| 
 | |
|     def _headers(self) -> Dict:
 | |
|         return {
 | |
|             "Authorization": f"bearer {self.deepinfra_api_token}",
 | |
|             "Content-Type": "application/json",
 | |
|         }
 | |
| 
 | |
|     def _body(self, prompt: str, kwargs: Any) -> Dict:
 | |
|         model_kwargs = self.model_kwargs or {}
 | |
|         model_kwargs = {**model_kwargs, **kwargs}
 | |
| 
 | |
|         return {
 | |
|             "input": prompt,
 | |
|             **model_kwargs,
 | |
|         }
 | |
| 
 | |
|     def _handle_status(self, code: int, text: Any) -> None:
 | |
|         if code >= 500:
 | |
|             raise Exception(f"DeepInfra Server: Error {code}")
 | |
|         elif code >= 400:
 | |
|             raise ValueError(f"DeepInfra received an invalid payload: {text}")
 | |
|         elif code != 200:
 | |
|             raise Exception(
 | |
|                 f"DeepInfra returned an unexpected response with status "
 | |
|                 f"{code}: {text}"
 | |
|             )
 | |
| 
 | |
|     def _call(
 | |
|         self,
 | |
|         prompt: str,
 | |
|         stop: Optional[List[str]] = None,
 | |
|         run_manager: Optional[CallbackManagerForLLMRun] = None,
 | |
|         **kwargs: Any,
 | |
|     ) -> str:
 | |
|         """Call out to DeepInfra's inference API endpoint.
 | |
| 
 | |
|         Args:
 | |
|             prompt: The prompt to pass into the model.
 | |
|             stop: Optional list of stop words to use when generating.
 | |
| 
 | |
|         Returns:
 | |
|             The string generated by the model.
 | |
| 
 | |
|         Example:
 | |
|             .. code-block:: python
 | |
| 
 | |
|                 response = di("Tell me a joke.")
 | |
|         """
 | |
| 
 | |
|         request = Requests(headers=self._headers())
 | |
|         response = request.post(url=self._url(), data=self._body(prompt, kwargs))
 | |
| 
 | |
|         self._handle_status(response.status_code, response.text)
 | |
|         data = response.json()
 | |
| 
 | |
|         return data["results"][0]["generated_text"]
 | |
| 
 | |
|     async def _acall(
 | |
|         self,
 | |
|         prompt: str,
 | |
|         stop: Optional[List[str]] = None,
 | |
|         run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
 | |
|         **kwargs: Any,
 | |
|     ) -> str:
 | |
|         request = Requests(headers=self._headers())
 | |
|         async with request.apost(
 | |
|             url=self._url(), data=self._body(prompt, kwargs)
 | |
|         ) as response:
 | |
|             self._handle_status(response.status, response.text)
 | |
|             data = await response.json()
 | |
|             return data["results"][0]["generated_text"]
 | |
| 
 | |
|     def _stream(
 | |
|         self,
 | |
|         prompt: str,
 | |
|         stop: Optional[List[str]] = None,
 | |
|         run_manager: Optional[CallbackManagerForLLMRun] = None,
 | |
|         **kwargs: Any,
 | |
|     ) -> Iterator[GenerationChunk]:
 | |
|         request = Requests(headers=self._headers())
 | |
|         response = request.post(
 | |
|             url=self._url(), data=self._body(prompt, {**kwargs, "stream": True})
 | |
|         )
 | |
| 
 | |
|         self._handle_status(response.status_code, response.text)
 | |
|         for line in _parse_stream(response.iter_lines()):
 | |
|             chunk = _handle_sse_line(line)
 | |
|             if chunk:
 | |
|                 yield chunk
 | |
|                 if run_manager:
 | |
|                     run_manager.on_llm_new_token(chunk.text)
 | |
| 
 | |
|     async def _astream(
 | |
|         self,
 | |
|         prompt: str,
 | |
|         stop: Optional[List[str]] = None,
 | |
|         run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
 | |
|         **kwargs: Any,
 | |
|     ) -> AsyncIterator[GenerationChunk]:
 | |
|         request = Requests(headers=self._headers())
 | |
|         async with request.apost(
 | |
|             url=self._url(), data=self._body(prompt, {**kwargs, "stream": True})
 | |
|         ) as response:
 | |
|             self._handle_status(response.status, response.text)
 | |
|             async for line in _parse_stream_async(response.content):
 | |
|                 chunk = _handle_sse_line(line)
 | |
|                 if chunk:
 | |
|                     yield chunk
 | |
|                     if run_manager:
 | |
|                         await run_manager.on_llm_new_token(chunk.text)
 | |
| 
 | |
| 
 | |
| def _parse_stream(rbody: Iterator[bytes]) -> Iterator[str]:
 | |
|     for line in rbody:
 | |
|         _line = _parse_stream_helper(line)
 | |
|         if _line is not None:
 | |
|             yield _line
 | |
| 
 | |
| 
 | |
| async def _parse_stream_async(rbody: aiohttp.StreamReader) -> AsyncIterator[str]:
 | |
|     async for line in rbody:
 | |
|         _line = _parse_stream_helper(line)
 | |
|         if _line is not None:
 | |
|             yield _line
 | |
| 
 | |
| 
 | |
| def _parse_stream_helper(line: bytes) -> Optional[str]:
 | |
|     if line and line.startswith(b"data:"):
 | |
|         if line.startswith(b"data: "):
 | |
|             # SSE event may be valid when it contain whitespace
 | |
|             line = line[len(b"data: ") :]
 | |
|         else:
 | |
|             line = line[len(b"data:") :]
 | |
|         if line.strip() == b"[DONE]":
 | |
|             # return here will cause GeneratorExit exception in urllib3
 | |
|             # and it will close http connection with TCP Reset
 | |
|             return None
 | |
|         else:
 | |
|             return line.decode("utf-8")
 | |
|     return None
 | |
| 
 | |
| 
 | |
| def _handle_sse_line(line: str) -> Optional[GenerationChunk]:
 | |
|     try:
 | |
|         obj = json.loads(line)
 | |
|         return GenerationChunk(
 | |
|             text=obj.get("token", {}).get("text"),
 | |
|         )
 | |
|     except Exception:
 | |
|         return None
 |