mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-30 23:29:54 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			146 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			146 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Any, Dict, List, Mapping, Optional
 | |
| 
 | |
| from langchain_core.callbacks import CallbackManagerForLLMRun
 | |
| from langchain_core.language_models.llms import LLM
 | |
| from langchain_core.pydantic_v1 import Extra, SecretStr, root_validator
 | |
| from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
 | |
| 
 | |
| 
 | |
| class NLPCloud(LLM):
 | |
|     """NLPCloud large language models.
 | |
| 
 | |
|     To use, you should have the ``nlpcloud`` python package installed, and the
 | |
|     environment variable ``NLPCLOUD_API_KEY`` set with your API key.
 | |
| 
 | |
|     Example:
 | |
|         .. code-block:: python
 | |
| 
 | |
|             from langchain_community.llms import NLPCloud
 | |
|             nlpcloud = NLPCloud(model="finetuned-gpt-neox-20b")
 | |
|     """
 | |
| 
 | |
|     client: Any  #: :meta private:
 | |
|     model_name: str = "finetuned-gpt-neox-20b"
 | |
|     """Model name to use."""
 | |
|     gpu: bool = True
 | |
|     """Whether to use a GPU or not"""
 | |
|     lang: str = "en"
 | |
|     """Language to use (multilingual addon)"""
 | |
|     temperature: float = 0.7
 | |
|     """What sampling temperature to use."""
 | |
|     max_length: int = 256
 | |
|     """The maximum number of tokens to generate in the completion."""
 | |
|     length_no_input: bool = True
 | |
|     """Whether min_length and max_length should include the length of the input."""
 | |
|     remove_input: bool = True
 | |
|     """Remove input text from API response"""
 | |
|     remove_end_sequence: bool = True
 | |
|     """Whether or not to remove the end sequence token."""
 | |
|     bad_words: List[str] = []
 | |
|     """List of tokens not allowed to be generated."""
 | |
|     top_p: float = 1.0
 | |
|     """Total probability mass of tokens to consider at each step."""
 | |
|     top_k: int = 50
 | |
|     """The number of highest probability tokens to keep for top-k filtering."""
 | |
|     repetition_penalty: float = 1.0
 | |
|     """Penalizes repeated tokens. 1.0 means no penalty."""
 | |
|     num_beams: int = 1
 | |
|     """Number of beams for beam search."""
 | |
|     num_return_sequences: int = 1
 | |
|     """How many completions to generate for each prompt."""
 | |
| 
 | |
|     nlpcloud_api_key: Optional[SecretStr] = None
 | |
| 
 | |
|     class Config:
 | |
|         """Configuration for this pydantic object."""
 | |
| 
 | |
|         extra = Extra.forbid
 | |
| 
 | |
|     @root_validator()
 | |
|     def validate_environment(cls, values: Dict) -> Dict:
 | |
|         """Validate that api key and python package exists in environment."""
 | |
|         values["nlpcloud_api_key"] = convert_to_secret_str(
 | |
|             get_from_dict_or_env(values, "nlpcloud_api_key", "NLPCLOUD_API_KEY")
 | |
|         )
 | |
|         try:
 | |
|             import nlpcloud
 | |
| 
 | |
|             values["client"] = nlpcloud.Client(
 | |
|                 values["model_name"],
 | |
|                 values["nlpcloud_api_key"].get_secret_value(),
 | |
|                 gpu=values["gpu"],
 | |
|                 lang=values["lang"],
 | |
|             )
 | |
|         except ImportError:
 | |
|             raise ImportError(
 | |
|                 "Could not import nlpcloud python package. "
 | |
|                 "Please install it with `pip install nlpcloud`."
 | |
|             )
 | |
|         return values
 | |
| 
 | |
|     @property
 | |
|     def _default_params(self) -> Mapping[str, Any]:
 | |
|         """Get the default parameters for calling NLPCloud API."""
 | |
|         return {
 | |
|             "temperature": self.temperature,
 | |
|             "max_length": self.max_length,
 | |
|             "length_no_input": self.length_no_input,
 | |
|             "remove_input": self.remove_input,
 | |
|             "remove_end_sequence": self.remove_end_sequence,
 | |
|             "bad_words": self.bad_words,
 | |
|             "top_p": self.top_p,
 | |
|             "top_k": self.top_k,
 | |
|             "repetition_penalty": self.repetition_penalty,
 | |
|             "num_beams": self.num_beams,
 | |
|             "num_return_sequences": self.num_return_sequences,
 | |
|         }
 | |
| 
 | |
|     @property
 | |
|     def _identifying_params(self) -> Mapping[str, Any]:
 | |
|         """Get the identifying parameters."""
 | |
|         return {
 | |
|             **{"model_name": self.model_name},
 | |
|             **{"gpu": self.gpu},
 | |
|             **{"lang": self.lang},
 | |
|             **self._default_params,
 | |
|         }
 | |
| 
 | |
|     @property
 | |
|     def _llm_type(self) -> str:
 | |
|         """Return type of llm."""
 | |
|         return "nlpcloud"
 | |
| 
 | |
|     def _call(
 | |
|         self,
 | |
|         prompt: str,
 | |
|         stop: Optional[List[str]] = None,
 | |
|         run_manager: Optional[CallbackManagerForLLMRun] = None,
 | |
|         **kwargs: Any,
 | |
|     ) -> str:
 | |
|         """Call out to NLPCloud's create endpoint.
 | |
| 
 | |
|         Args:
 | |
|             prompt: The prompt to pass into the model.
 | |
|             stop: Not supported by this interface (pass in init method)
 | |
| 
 | |
|         Returns:
 | |
|             The string generated by the model.
 | |
| 
 | |
|         Example:
 | |
|             .. code-block:: python
 | |
| 
 | |
|                 response = nlpcloud("Tell me a joke.")
 | |
|         """
 | |
|         if stop and len(stop) > 1:
 | |
|             raise ValueError(
 | |
|                 "NLPCloud only supports a single stop sequence per generation."
 | |
|                 "Pass in a list of length 1."
 | |
|             )
 | |
|         elif stop and len(stop) == 1:
 | |
|             end_sequence = stop[0]
 | |
|         else:
 | |
|             end_sequence = None
 | |
|         params = {**self._default_params, **kwargs}
 | |
|         response = self.client.generation(prompt, end_sequence=end_sequence, **params)
 | |
|         return response["generated_text"]
 |