Files
langchain/docs/docs/integrations/chat/cohere.ipynb
Anirudh31415926535 4da3d4b18e docs: Minor corrections and updates to Cohere docs (#22726)
- **Description:** Update the Cohere's provider and RagRetriever
documentations with latest updates.
    - **Twitter handle:** Anirudh1810
2024-07-31 10:16:26 -07:00

353 lines
11 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
{
"cells": [
{
"cell_type": "raw",
"id": "53fbf15f",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Cohere\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"metadata": {},
"source": [
"# Cohere\n",
"\n",
"This notebook covers how to get started with [Cohere chat models](https://cohere.com/chat).\n",
"\n",
"Head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.cohere.ChatCohere.html) for detailed documentation of all attributes and methods."
]
},
{
"cell_type": "markdown",
"id": "3607d67e-e56c-4102-bbba-df2edc0e109e",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"The integration lives in the `langchain-cohere` package. We can install these with:\n",
"\n",
"```bash\n",
"pip install -U langchain-cohere\n",
"```\n",
"\n",
"We'll also need to get a [Cohere API key](https://cohere.com/) and set the `COHERE_API_KEY` environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "2108b517-1e8d-473d-92fa-4f930e8072a7",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"COHERE_API_KEY\"] = getpass.getpass()"
]
},
{
"cell_type": "markdown",
"id": "cf690fbb",
"metadata": {},
"source": [
"It's also helpful (but not needed) to set up [LangSmith](https://smith.langchain.com/) for best-in-class observability"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7f11de02",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
]
},
{
"cell_type": "markdown",
"id": "4c26754b-b3c9-4d93-8f36-43049bd943bf",
"metadata": {},
"source": [
"## Usage\n",
"\n",
"ChatCohere supports all [ChatModel](/docs/how_to#chat-models) functionality:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain_cohere import ChatCohere\n",
"from langchain_core.messages import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"chat = ChatCohere()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='4 && 5 \\n6 || 7 \\n\\nWould you like to play a game of odds and evens?', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '2076b614-52b3-4082-a259-cc92cd3d9fea', 'token_count': {'prompt_tokens': 68, 'response_tokens': 23, 'total_tokens': 91, 'billed_tokens': 77}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '2076b614-52b3-4082-a259-cc92cd3d9fea', 'token_count': {'prompt_tokens': 68, 'response_tokens': 23, 'total_tokens': 91, 'billed_tokens': 77}}, id='run-3475e0c8-c89b-4937-9300-e07d652455e1-0')"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [HumanMessage(content=\"1\"), HumanMessage(content=\"2 3\")]\n",
"chat.invoke(messages)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "c5fac0e9-05a4-4fc1-a3b3-e5bbb24b971b",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='4 && 5', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': 'f0708a92-f874-46ee-9b93-334d616ad92e', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': 'f0708a92-f874-46ee-9b93-334d616ad92e', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, id='run-1635e63e-2994-4e7f-986e-152ddfc95777-0')"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await chat.ainvoke(messages)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "025be980-e50d-4a68-93dc-c9c7b500ce34",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4 && 5"
]
}
],
"source": [
"for chunk in chat.stream(messages):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "064288e4-f184-4496-9427-bcf148fa055e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content='4 && 5', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6770ca86-f6c3-4ba3-a285-c4772160612f', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6770ca86-f6c3-4ba3-a285-c4772160612f', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, id='run-8d6fade2-1b39-4e31-ab23-4be622dd0027-0')]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat.batch([messages])"
]
},
{
"cell_type": "markdown",
"id": "f1c56460",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"You can also easily combine with a prompt template for easy structuring of user input. We can do this using [LCEL](/docs/concepts#langchain-expression-language-lcel)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "0851b103",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"Tell me a joke about {topic}\")\n",
"chain = prompt | chat"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "ae950c0f-1691-47f1-b609-273033cae707",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='What color socks do bears wear?\\n\\nThey dont wear socks, they have bear feet. \\n\\nHope you laughed! If not, maybe this will help: laughter is the best medicine, and a good sense of humor is infectious!', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6edccf44-9bc8-4139-b30e-13b368f3563c', 'token_count': {'prompt_tokens': 68, 'response_tokens': 51, 'total_tokens': 119, 'billed_tokens': 108}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6edccf44-9bc8-4139-b30e-13b368f3563c', 'token_count': {'prompt_tokens': 68, 'response_tokens': 51, 'total_tokens': 119, 'billed_tokens': 108}}, id='run-ef7f9789-0d4d-43bf-a4f7-f2a0e27a5320-0')"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"topic\": \"bears\"})"
]
},
{
"cell_type": "markdown",
"id": "12db8d69",
"metadata": {},
"source": [
"## Tool calling\n",
"\n",
"Cohere supports tool calling functionalities!"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "337e24af",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.messages import (\n",
" HumanMessage,\n",
" ToolMessage,\n",
")\n",
"from langchain_core.tools import tool"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "74d292e7",
"metadata": {},
"outputs": [],
"source": [
"@tool\n",
"def magic_function(number: int) -> int:\n",
" \"\"\"Applies a magic operation to an integer\n",
" Args:\n",
" number: Number to have magic operation performed on\n",
" \"\"\"\n",
" return number + 10\n",
"\n",
"\n",
"def invoke_tools(tool_calls, messages):\n",
" for tool_call in tool_calls:\n",
" selected_tool = {\"magic_function\": magic_function}[tool_call[\"name\"].lower()]\n",
" tool_output = selected_tool.invoke(tool_call[\"args\"])\n",
" messages.append(ToolMessage(tool_output, tool_call_id=tool_call[\"id\"]))\n",
" return messages\n",
"\n",
"\n",
"tools = [magic_function]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ecafcbc6",
"metadata": {},
"outputs": [],
"source": [
"llm_with_tools = chat.bind_tools(tools=tools)\n",
"messages = [HumanMessage(content=\"What is the value of magic_function(2)?\")]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "aa34fc39",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='The value of magic_function(2) is 12.', additional_kwargs={'documents': [{'id': 'magic_function:0:2:0', 'output': '12', 'tool_name': 'magic_function'}], 'citations': [ChatCitation(start=34, end=36, text='12', document_ids=['magic_function:0:2:0'])], 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '96a55791-0c58-4e2e-bc2a-8550e137c46d', 'token_count': {'input_tokens': 998, 'output_tokens': 59}}, response_metadata={'documents': [{'id': 'magic_function:0:2:0', 'output': '12', 'tool_name': 'magic_function'}], 'citations': [ChatCitation(start=34, end=36, text='12', document_ids=['magic_function:0:2:0'])], 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '96a55791-0c58-4e2e-bc2a-8550e137c46d', 'token_count': {'input_tokens': 998, 'output_tokens': 59}}, id='run-f318a9cf-55c8-44f4-91d1-27cf46c6a465-0')"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res = llm_with_tools.invoke(messages)\n",
"while res.tool_calls:\n",
" messages.append(res)\n",
" messages = invoke_tools(res.tool_calls, messages)\n",
" res = llm_with_tools.invoke(messages)\n",
"\n",
"res"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}