langchain/libs/community/tests/unit_tests/evaluation/test_loading.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

62 lines
2.0 KiB
Python

"""Test the loading function for evaluators."""
from typing import List
import pytest
from langchain.evaluation.loading import EvaluatorType, load_evaluators
from langchain.evaluation.schema import PairwiseStringEvaluator, StringEvaluator
from langchain_core.embeddings import FakeEmbeddings
from tests.unit_tests.llms.fake_chat_model import FakeChatModel
from tests.unit_tests.llms.fake_llm import FakeLLM
@pytest.mark.requires("rapidfuzz")
@pytest.mark.parametrize("evaluator_type", EvaluatorType)
def test_load_evaluators(evaluator_type: EvaluatorType) -> None:
"""Test loading evaluators."""
fake_llm = FakeChatModel()
embeddings = FakeEmbeddings(size=32)
load_evaluators([evaluator_type], llm=fake_llm, embeddings=embeddings)
# Test as string
load_evaluators(
[evaluator_type.value], # type: ignore
llm=fake_llm,
embeddings=embeddings,
)
@pytest.mark.parametrize(
"evaluator_types",
[
[EvaluatorType.LABELED_CRITERIA],
[EvaluatorType.LABELED_PAIRWISE_STRING],
[EvaluatorType.LABELED_SCORE_STRING],
[EvaluatorType.QA],
[EvaluatorType.CONTEXT_QA],
[EvaluatorType.COT_QA],
[EvaluatorType.COT_QA, EvaluatorType.LABELED_CRITERIA],
[
EvaluatorType.COT_QA,
EvaluatorType.LABELED_CRITERIA,
EvaluatorType.LABELED_PAIRWISE_STRING,
],
[EvaluatorType.JSON_EQUALITY],
[EvaluatorType.EXACT_MATCH, EvaluatorType.REGEX_MATCH],
],
)
def test_eval_chain_requires_references(evaluator_types: List[EvaluatorType]) -> None:
"""Test loading evaluators."""
fake_llm = FakeLLM(
queries={"text": "The meaning of life\nCORRECT"}, sequential_responses=True
)
evaluators = load_evaluators(
evaluator_types,
llm=fake_llm,
)
for evaluator in evaluators:
if not isinstance(evaluator, (StringEvaluator, PairwiseStringEvaluator)):
raise ValueError("Evaluator is not a [pairwise]string evaluator")
assert evaluator.requires_reference