mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-28 10:39:23 +00:00
- **Description**: Adding vectorstore wrapper for [SemaDB](https://rapidapi.com/semafind-semadb/api/semadb). - **Issue**: None - **Dependencies**: None - **Twitter handle**: semafind Checks performed: - [x] `make format` - [x] `make lint` - [x] `make test` - [x] `make spell_check` - [x] `make docs_build` Documentation added: - SemaDB vectorstore wrapper tutorial
300 lines
8.1 KiB
Plaintext
300 lines
8.1 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "fe1cf4b8-4fee-49d9-aad5-18adabaca692",
|
||
"metadata": {},
|
||
"source": [
|
||
"# SemaDB\n",
|
||
"\n",
|
||
"> SemaDB is a no fuss vector similarity database for building AI applications. The hosted SemaDB Cloud offers a no fuss developer experience to get started.\n",
|
||
"\n",
|
||
"The full documentation of the API along with examples and an interactive playground is available on [RapidAPI](https://rapidapi.com/semafind-semadb/api/semadb).\n",
|
||
"\n",
|
||
"This notebook demonstrates how the `langchain` wrapper can be used with SemaDB Cloud."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "aa8c1970-52f0-4834-8f06-3ca8f7fac857",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Load document embeddings\n",
|
||
"\n",
|
||
"To run things locally, we are using [Sentence Transformers](https://www.sbert.net/) which are commonly used for embedding sentences. You can use any embedding model LangChain offers."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "386a6b49-edee-45f2-9c0e-ebc125507ece",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"!pip install sentence_transformers"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "5bd07a44-34fd-4318-8033-4c8dbd327559",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from langchain.embeddings import HuggingFaceEmbeddings\n",
|
||
"\n",
|
||
"embeddings = HuggingFaceEmbeddings()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "b0079bdf-b3cd-4856-85d5-f7787f5d93d5",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"114\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||
"from langchain.document_loaders import TextLoader\n",
|
||
"\n",
|
||
"loader = TextLoader(\"../../modules/state_of_the_union.txt\")\n",
|
||
"documents = loader.load()\n",
|
||
"text_splitter = CharacterTextSplitter(chunk_size=400, chunk_overlap=0)\n",
|
||
"docs = text_splitter.split_documents(documents)\n",
|
||
"print(len(docs))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "92ed5523-330d-4697-9008-c910044ac45a",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Connect to SemaDB\n",
|
||
"\n",
|
||
"SemaDB Cloud uses [RapidAPI keys](https://rapidapi.com/semafind-semadb/api/semadb) to authenticate. You can obtain yours by creating a free RapidAPI account."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "c4ffeeef-e6f5-4bcc-8c97-0e4222ca8282",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdin",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"SemaDB API Key: ········\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import getpass\n",
|
||
"import os\n",
|
||
"\n",
|
||
"os.environ['SEMADB_API_KEY'] = getpass.getpass(\"SemaDB API Key:\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "ba5f7a81-0f59-448a-93a8-5d8bf3bfc0f9",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from langchain.vectorstores import SemaDB\n",
|
||
"from langchain.vectorstores.utils import DistanceStrategy"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "320f743c-39ae-456c-8c20-0683196358a4",
|
||
"metadata": {},
|
||
"source": [
|
||
"The parameters to the SemaDB vector store reflect the API directly:\n",
|
||
"\n",
|
||
"- \"mycollection\": is the collection name in which we will store these vectors.\n",
|
||
"- 768: is dimensions of the vectors. In our case, the sentence transformer embeddings yield 768 dimensional vectors.\n",
|
||
"- API_KEY: is your RapidAPI key.\n",
|
||
"- embeddings: correspond to how the embeddings of documents, texts and queries will be generated.\n",
|
||
"- DistanceStrategy: is the distance metric used. The wrapper automatically normalises vectors if COSINE is used."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "c1cb1f78-c25e-41a7-8001-6c84d51514ea",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"True"
|
||
]
|
||
},
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"db = SemaDB(\"mycollection\", 768, embeddings, DistanceStrategy.COSINE)\n",
|
||
"\n",
|
||
"# Create collection if running for the first time. If the collection\n",
|
||
"# already exists this will fail.\n",
|
||
"db.create_collection()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "44348469-1d1f-4f3e-9af3-a955aec3dd71",
|
||
"metadata": {},
|
||
"source": [
|
||
"The SemaDB vector store wrapper adds the document text as point metadata to collect later. Storing large chunks of text is *not recommended*. If you are indexing a large collection, we instead recommend storing references to the documents such as external Ids."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"id": "9adca5d3-e534-4fd2-aace-f436de4630ed",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"['813c7ef3-9797-466b-8afa-587115592c6c',\n",
|
||
" 'fc392f7f-082b-4932-bfcc-06800db5e017']"
|
||
]
|
||
},
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"db.add_documents(docs)[:2]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "fb177b0d-148b-4cbc-86cc-b62dff135a9d",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Similarity Search\n",
|
||
"\n",
|
||
"We use the default LangChain similarity search interface to search for the most similar sentences."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"id": "7536aba2-a757-4a3f-beda-79cfee5c34cf",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||
"docs = db.similarity_search(query)\n",
|
||
"print(docs[0].page_content)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "a51e940e-487e-484d-9dc4-1aa1a6371660",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"(Document(page_content='And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../modules/state_of_the_union.txt', 'text': 'And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.'}),\n",
|
||
" 0.42369342)"
|
||
]
|
||
},
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"docs = db.similarity_search_with_score(query)\n",
|
||
"docs[0]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "79aec3f4-d4d8-4c51-b4b2-074b6c22c3c0",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Clean up\n",
|
||
"\n",
|
||
"You can delete the collection to remove all data."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"id": "b00afad5-8ec1-4c19-be6b-1c2ae2d5fead",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"True"
|
||
]
|
||
},
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"db.delete_collection()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "239a0bca-5c88-401f-9828-1cb0b652e7d0",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.10.12"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|