Files
langchain/docs
Aayush Kataria 7c2f3f6f95 community[minor]: Adding Azure Cosmos Mongo vCore Vector DB Cache (#16856)
Description:

This pull request introduces several enhancements for Azure Cosmos
Vector DB, primarily focused on improving caching and search
capabilities using Azure Cosmos MongoDB vCore Vector DB. Here's a
summary of the changes:

- **AzureCosmosDBSemanticCache**: Added a new cache implementation
called AzureCosmosDBSemanticCache, which utilizes Azure Cosmos MongoDB
vCore Vector DB for efficient caching of semantic data. Added
comprehensive test cases for AzureCosmosDBSemanticCache to ensure its
correctness and robustness. These tests cover various scenarios and edge
cases to validate the cache's behavior.
- **HNSW Vector Search**: Added HNSW vector search functionality in the
CosmosDB Vector Search module. This enhancement enables more efficient
and accurate vector searches by utilizing the HNSW (Hierarchical
Navigable Small World) algorithm. Added corresponding test cases to
validate the HNSW vector search functionality in both
AzureCosmosDBSemanticCache and AzureCosmosDBVectorSearch. These tests
ensure the correctness and performance of the HNSW search algorithm.
- **LLM Caching Notebook** - The notebook now includes a comprehensive
example showcasing the usage of the AzureCosmosDBSemanticCache. This
example highlights how the cache can be employed to efficiently store
and retrieve semantic data. Additionally, the example provides default
values for all parameters used within the AzureCosmosDBSemanticCache,
ensuring clarity and ease of understanding for users who are new to the
cache implementation.
 
 @hwchase17,@baskaryan, @eyurtsev,
2024-03-03 14:04:15 -08:00
..
2024-02-21 16:38:28 -08:00
2024-02-20 18:30:11 -08:00
2024-02-22 15:20:34 -08:00
2024-02-20 18:30:11 -08:00
2023-12-17 12:55:49 -08:00
2024-02-08 14:52:26 -08:00
2024-01-08 08:38:14 -08:00

LangChain Documentation

For more information on contributing to our documentation, see the Documentation Contributing Guide