mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-28 20:05:58 +00:00
275 lines
8.2 KiB
Plaintext
275 lines
8.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "raw",
|
|
"id": "afaf8039",
|
|
"metadata": {},
|
|
"source": [
|
|
"---\n",
|
|
"sidebar_label: __ModuleName__\n",
|
|
"---"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9a3d6f34",
|
|
"metadata": {},
|
|
"source": [
|
|
"# __ModuleName__Embeddings\n",
|
|
"\n",
|
|
"- [ ] TODO: Make sure API reference link is correct\n",
|
|
"\n",
|
|
"This will help you get started with __ModuleName__ embedding models using LangChain. For detailed documentation on `__ModuleName__Embeddings` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/embeddings/__module_name__.embeddings.__ModuleName__Embeddings.html).\n",
|
|
"\n",
|
|
"## Overview\n",
|
|
"### Integration details\n",
|
|
"\n",
|
|
"- TODO: Fill in table features.\n",
|
|
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
|
|
"- TODO: Make sure API reference links are correct.\n",
|
|
"\n",
|
|
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/text_embedding/__package_name_short_snake__) | Package downloads | Package latest |\n",
|
|
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
|
"| [__ModuleName__Embeddings](https://api.python.langchain.com/en/latest/embeddings/__module_name__.embeddings.__ModuleName__Embeddings.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | beta/❌ | ✅/❌ |  |  |\n",
|
|
"\n",
|
|
"## Setup\n",
|
|
"\n",
|
|
"- [ ] TODO: Update with relevant info.\n",
|
|
"\n",
|
|
"To access __ModuleName__ embedding models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
|
|
"\n",
|
|
"### Credentials\n",
|
|
"\n",
|
|
"- TODO: Update with relevant info.\n",
|
|
"\n",
|
|
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "36521c2a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import getpass\n",
|
|
"import os\n",
|
|
"\n",
|
|
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
|
|
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"Enter your __ModuleName__ API key: \")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c84fb993",
|
|
"metadata": {},
|
|
"source": [
|
|
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "39a4953b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
|
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "d9664366",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Installation\n",
|
|
"\n",
|
|
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "64853226",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%pip install -qU __package_name__"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "45dd1724",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Instantiation\n",
|
|
"\n",
|
|
"Now we can instantiate our model object and generate chat completions:\n",
|
|
"\n",
|
|
"- TODO: Update model instantiation with relevant params."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9ea7a09b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from __module_name__ import __ModuleName__Embeddings\n",
|
|
"\n",
|
|
"embeddings = __ModuleName__Embeddings(\n",
|
|
" model=\"model-name\",\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "77d271b6",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Indexing and Retrieval\n",
|
|
"\n",
|
|
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our RAG tutorials under the [working with external knowledge tutorials](/docs/tutorials/#working-with-external-knowledge).\n",
|
|
"\n",
|
|
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d817716b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create a vector store with a sample text\n",
|
|
"from langchain_core.vectorstores import InMemoryVectorStore\n",
|
|
"\n",
|
|
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
|
|
"\n",
|
|
"vectorstore = InMemoryVectorStore.from_texts(\n",
|
|
" [text],\n",
|
|
" embedding=embeddings,\n",
|
|
")\n",
|
|
"\n",
|
|
"# Use the vectorstore as a retriever\n",
|
|
"retriever = vectorstore.as_retriever()\n",
|
|
"\n",
|
|
"# Retrieve the most similar text\n",
|
|
"retrieved_document = retriever.invoke(\"What is LangChain?\")\n",
|
|
"\n",
|
|
"# show the retrieved document's content\n",
|
|
"retrieved_document.page_content"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "e02b9855",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Direct Usage\n",
|
|
"\n",
|
|
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
|
|
"\n",
|
|
"You can directly call these methods to get embeddings for your own use cases.\n",
|
|
"\n",
|
|
"### Embed single texts\n",
|
|
"\n",
|
|
"You can embed single texts or documents with `embed_query`:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "0d2befcd",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"single_vector = embeddings.embed_query(text)\n",
|
|
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "1b5a7d03",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Embed multiple texts\n",
|
|
"\n",
|
|
"You can embed multiple texts with `embed_documents`:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2f4d6e97",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"text2 = (\n",
|
|
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
|
|
")\n",
|
|
"two_vectors = embeddings.embed_queries([text, text2])\n",
|
|
"for vector in two_vectors:\n",
|
|
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "98785c12",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Async Usage\n",
|
|
"\n",
|
|
"You can also use `aembed_query` and `aembed_documents` for producing embeddings asynchronously:\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4c3bef91",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import asyncio\n",
|
|
"\n",
|
|
"async def async_example():\n",
|
|
" single_vector = await embeddings.embed_query(text)\n",
|
|
" print(str(single_vector)[:100]) # Show the first 100 characters of the vector\n",
|
|
"\n",
|
|
"asyncio.run(async_example())"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f1bd4396",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.5"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|