mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-04 10:10:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			172 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			172 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
{
 | 
						|
 "cells": [
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "9597802c",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "# Anyscale\n",
 | 
						|
    "\n",
 | 
						|
    "[Anyscale](https://www.anyscale.com/) is a fully-managed [Ray](https://www.ray.io/) platform, on which you can build, deploy, and manage scalable AI and Python applications\n",
 | 
						|
    "\n",
 | 
						|
    "This example goes over how to use LangChain to interact with `Anyscale` [service](https://docs.anyscale.com/productionize/services-v2/get-started)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "5472a7cd-af26-48ca-ae9b-5f6ae73c74d2",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "import os\n",
 | 
						|
    "\n",
 | 
						|
    "os.environ[\"ANYSCALE_SERVICE_URL\"] = ANYSCALE_SERVICE_URL\n",
 | 
						|
    "os.environ[\"ANYSCALE_SERVICE_ROUTE\"] = ANYSCALE_SERVICE_ROUTE\n",
 | 
						|
    "os.environ[\"ANYSCALE_SERVICE_TOKEN\"] = ANYSCALE_SERVICE_TOKEN"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "6fb585dd",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "from langchain.llms import Anyscale\n",
 | 
						|
    "from langchain import PromptTemplate, LLMChain"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "035dea0f",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "template = \"\"\"Question: {question}\n",
 | 
						|
    "\n",
 | 
						|
    "Answer: Let's think step by step.\"\"\"\n",
 | 
						|
    "\n",
 | 
						|
    "prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "3f3458d9",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "llm = Anyscale()"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "a641dbd9",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "llm_chain = LLMChain(prompt=prompt, llm=llm)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "9f844993",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "question = \"When was George Washington president?\"\n",
 | 
						|
    "\n",
 | 
						|
    "llm_chain.run(question)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "42f05b34-1a44-4cbd-8342-35c1572b6765",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "With Ray, we can distribute the queries without asyncrhonized implementation. This not only applies to Anyscale LLM model, but to any other Langchain LLM models which do not have `_acall` or `_agenerate` implemented"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "08b23adc-2b29-4c38-b538-47b3c3d840a6",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "prompt_list = [\n",
 | 
						|
    "    \"When was George Washington president?\",\n",
 | 
						|
    "    \"Explain to me the difference between nuclear fission and fusion.\",\n",
 | 
						|
    "    \"Give me a list of 5 science fiction books I should read next.\",\n",
 | 
						|
    "    \"Explain the difference between Spark and Ray.\",\n",
 | 
						|
    "    \"Suggest some fun holiday ideas.\",\n",
 | 
						|
    "    \"Tell a joke.\",\n",
 | 
						|
    "    \"What is 2+2?\",\n",
 | 
						|
    "    \"Explain what is machine learning like I am five years old.\",\n",
 | 
						|
    "    \"Explain what is artifical intelligence.\",\n",
 | 
						|
    "]"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "2b45abb9-b764-497d-af99-0df1d4e335e0",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "import ray\n",
 | 
						|
    "\n",
 | 
						|
    "@ray.remote\n",
 | 
						|
    "def send_query(llm, prompt):\n",
 | 
						|
    "    resp = llm(prompt)\n",
 | 
						|
    "    return resp\n",
 | 
						|
    "\n",
 | 
						|
    "futures = [send_query.remote(llm, prompt) for prompt in prompt_list]\n",
 | 
						|
    "results = ray.get(futures)"
 | 
						|
   ]
 | 
						|
  }
 | 
						|
 ],
 | 
						|
 "metadata": {
 | 
						|
  "kernelspec": {
 | 
						|
   "display_name": "Python 3 (ipykernel)",
 | 
						|
   "language": "python",
 | 
						|
   "name": "python3"
 | 
						|
  },
 | 
						|
  "language_info": {
 | 
						|
   "codemirror_mode": {
 | 
						|
    "name": "ipython",
 | 
						|
    "version": 3
 | 
						|
   },
 | 
						|
   "file_extension": ".py",
 | 
						|
   "mimetype": "text/x-python",
 | 
						|
   "name": "python",
 | 
						|
   "nbconvert_exporter": "python",
 | 
						|
   "pygments_lexer": "ipython3",
 | 
						|
   "version": "3.10.8"
 | 
						|
  },
 | 
						|
  "vscode": {
 | 
						|
   "interpreter": {
 | 
						|
    "hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
 | 
						|
   }
 | 
						|
  }
 | 
						|
 },
 | 
						|
 "nbformat": 4,
 | 
						|
 "nbformat_minor": 5
 | 
						|
}
 |