mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-28 03:51:50 +00:00
Support "usage_metadata" for LiteLLM streaming calls. This is a follow-up to https://github.com/langchain-ai/langchain/pull/30625, which tackled non-streaming calls. If no one reviews your PR within a few days, please @-mention one of baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
622 lines
23 KiB
Python
622 lines
23 KiB
Python
"""Wrapper around LiteLLM's model I/O library."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import logging
|
|
from typing import (
|
|
Any,
|
|
AsyncIterator,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Literal,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
agenerate_from_stream,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.language_models.llms import create_base_retry_decorator
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
FunctionMessage,
|
|
FunctionMessageChunk,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
SystemMessage,
|
|
SystemMessageChunk,
|
|
ToolCall,
|
|
ToolCallChunk,
|
|
ToolMessage,
|
|
)
|
|
from langchain_core.messages.ai import UsageMetadata
|
|
from langchain_core.outputs import (
|
|
ChatGeneration,
|
|
ChatGenerationChunk,
|
|
ChatResult,
|
|
)
|
|
from langchain_core.runnables import Runnable
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils import get_from_dict_or_env, pre_init
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
from pydantic import BaseModel, Field
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ChatLiteLLMException(Exception):
|
|
"""Error with the `LiteLLM I/O` library"""
|
|
|
|
|
|
def _create_retry_decorator(
|
|
llm: ChatLiteLLM,
|
|
run_manager: Optional[
|
|
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
|
|
] = None,
|
|
) -> Callable[[Any], Any]:
|
|
"""Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions"""
|
|
import litellm
|
|
|
|
errors = [
|
|
litellm.Timeout,
|
|
litellm.APIError,
|
|
litellm.APIConnectionError,
|
|
litellm.RateLimitError,
|
|
]
|
|
return create_base_retry_decorator(
|
|
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
|
|
)
|
|
|
|
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|
role = _dict["role"]
|
|
if role == "user":
|
|
return HumanMessage(content=_dict["content"])
|
|
elif role == "assistant":
|
|
# Fix for azure
|
|
# Also OpenAI returns None for tool invocations
|
|
content = _dict.get("content", "") or ""
|
|
|
|
additional_kwargs = {}
|
|
if _dict.get("function_call"):
|
|
additional_kwargs["function_call"] = dict(_dict["function_call"])
|
|
|
|
if _dict.get("tool_calls"):
|
|
additional_kwargs["tool_calls"] = _dict["tool_calls"]
|
|
|
|
return AIMessage(content=content, additional_kwargs=additional_kwargs)
|
|
elif role == "system":
|
|
return SystemMessage(content=_dict["content"])
|
|
elif role == "function":
|
|
return FunctionMessage(content=_dict["content"], name=_dict["name"])
|
|
else:
|
|
return ChatMessage(content=_dict["content"], role=role)
|
|
|
|
|
|
async def acompletion_with_retry(
|
|
llm: ChatLiteLLM,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Use tenacity to retry the async completion call."""
|
|
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
|
|
|
|
@retry_decorator
|
|
async def _completion_with_retry(**kwargs: Any) -> Any:
|
|
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
|
|
return await llm.client.acreate(**kwargs)
|
|
|
|
return await _completion_with_retry(**kwargs)
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
|
) -> BaseMessageChunk:
|
|
role = _dict.get("role")
|
|
content = _dict.get("content") or ""
|
|
if _dict.get("function_call"):
|
|
additional_kwargs = {"function_call": dict(_dict["function_call"])}
|
|
elif _dict.get("reasoning_content"):
|
|
additional_kwargs = {"reasoning_content": _dict["reasoning_content"]}
|
|
else:
|
|
additional_kwargs = {}
|
|
|
|
tool_call_chunks = []
|
|
if raw_tool_calls := _dict.get("tool_calls"):
|
|
additional_kwargs["tool_calls"] = raw_tool_calls
|
|
try:
|
|
tool_call_chunks = [
|
|
ToolCallChunk(
|
|
name=rtc["function"].get("name"),
|
|
args=rtc["function"].get("arguments"),
|
|
id=rtc.get("id"),
|
|
index=rtc["index"],
|
|
)
|
|
for rtc in raw_tool_calls
|
|
]
|
|
except KeyError:
|
|
pass
|
|
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
return HumanMessageChunk(content=content)
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
return AIMessageChunk(
|
|
content=content,
|
|
additional_kwargs=additional_kwargs,
|
|
tool_call_chunks=tool_call_chunks,
|
|
)
|
|
elif role == "system" or default_class == SystemMessageChunk:
|
|
return SystemMessageChunk(content=content)
|
|
elif role == "function" or default_class == FunctionMessageChunk:
|
|
return FunctionMessageChunk(content=content, name=_dict["name"])
|
|
elif role or default_class == ChatMessageChunk:
|
|
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
|
|
else:
|
|
return default_class(content=content) # type: ignore[call-arg]
|
|
|
|
|
|
def _lc_tool_call_to_openai_tool_call(tool_call: ToolCall) -> dict:
|
|
return {
|
|
"type": "function",
|
|
"id": tool_call["id"],
|
|
"function": {
|
|
"name": tool_call["name"],
|
|
"arguments": json.dumps(tool_call["args"]),
|
|
},
|
|
}
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
message_dict: Dict[str, Any] = {"content": message.content}
|
|
if isinstance(message, ChatMessage):
|
|
message_dict["role"] = message.role
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict["role"] = "user"
|
|
elif isinstance(message, AIMessage):
|
|
message_dict["role"] = "assistant"
|
|
if "function_call" in message.additional_kwargs:
|
|
message_dict["function_call"] = message.additional_kwargs["function_call"]
|
|
if message.tool_calls:
|
|
message_dict["tool_calls"] = [
|
|
_lc_tool_call_to_openai_tool_call(tc) for tc in message.tool_calls
|
|
]
|
|
elif "tool_calls" in message.additional_kwargs:
|
|
message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict["role"] = "system"
|
|
elif isinstance(message, FunctionMessage):
|
|
message_dict["role"] = "function"
|
|
message_dict["name"] = message.name
|
|
elif isinstance(message, ToolMessage):
|
|
message_dict["role"] = "tool"
|
|
message_dict["tool_call_id"] = message.tool_call_id
|
|
else:
|
|
raise ValueError(f"Got unknown type {message}")
|
|
if "name" in message.additional_kwargs:
|
|
message_dict["name"] = message.additional_kwargs["name"]
|
|
return message_dict
|
|
|
|
|
|
_OPENAI_MODELS = [
|
|
"o1-mini",
|
|
"o1-preview",
|
|
"gpt-4o-mini",
|
|
"gpt-4o-mini-2024-07-18",
|
|
"gpt-4o",
|
|
"gpt-4o-2024-08-06",
|
|
"gpt-4o-2024-05-13",
|
|
"gpt-4-turbo",
|
|
"gpt-4-turbo-preview",
|
|
"gpt-4-0125-preview",
|
|
"gpt-4-1106-preview",
|
|
"gpt-3.5-turbo-1106",
|
|
"gpt-3.5-turbo",
|
|
"gpt-3.5-turbo-0301",
|
|
"gpt-3.5-turbo-0613",
|
|
"gpt-3.5-turbo-16k",
|
|
"gpt-3.5-turbo-16k-0613",
|
|
"gpt-4",
|
|
"gpt-4-0314",
|
|
"gpt-4-0613",
|
|
"gpt-4-32k",
|
|
"gpt-4-32k-0314",
|
|
"gpt-4-32k-0613",
|
|
]
|
|
|
|
|
|
class ChatLiteLLM(BaseChatModel):
|
|
"""Chat model that uses the LiteLLM API."""
|
|
|
|
client: Any = None #: :meta private:
|
|
model: str = "gpt-3.5-turbo"
|
|
model_name: Optional[str] = None
|
|
"""Model name to use."""
|
|
openai_api_key: Optional[str] = None
|
|
azure_api_key: Optional[str] = None
|
|
anthropic_api_key: Optional[str] = None
|
|
replicate_api_key: Optional[str] = None
|
|
cohere_api_key: Optional[str] = None
|
|
openrouter_api_key: Optional[str] = None
|
|
api_key: Optional[str] = None
|
|
streaming: bool = False
|
|
api_base: Optional[str] = None
|
|
organization: Optional[str] = None
|
|
custom_llm_provider: Optional[str] = None
|
|
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
|
|
temperature: Optional[float] = None
|
|
"""Run inference with this temperature. Must be in the closed
|
|
interval [0.0, 1.0]."""
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for API call not explicitly specified."""
|
|
top_p: Optional[float] = None
|
|
"""Decode using nucleus sampling: consider the smallest set of tokens whose
|
|
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
|
|
top_k: Optional[int] = None
|
|
"""Decode using top-k sampling: consider the set of top_k most probable tokens.
|
|
Must be positive."""
|
|
n: Optional[int] = None
|
|
"""Number of chat completions to generate for each prompt. Note that the API may
|
|
not return the full n completions if duplicates are generated."""
|
|
max_tokens: Optional[int] = None
|
|
|
|
max_retries: int = 1
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling OpenAI API."""
|
|
set_model_value = self.model
|
|
if self.model_name is not None:
|
|
set_model_value = self.model_name
|
|
return {
|
|
"model": set_model_value,
|
|
"force_timeout": self.request_timeout,
|
|
"max_tokens": self.max_tokens,
|
|
"stream": self.streaming,
|
|
"n": self.n,
|
|
"temperature": self.temperature,
|
|
"custom_llm_provider": self.custom_llm_provider,
|
|
**self.model_kwargs,
|
|
}
|
|
|
|
@property
|
|
def _client_params(self) -> Dict[str, Any]:
|
|
"""Get the parameters used for the openai client."""
|
|
set_model_value = self.model
|
|
if self.model_name is not None:
|
|
set_model_value = self.model_name
|
|
self.client.api_base = self.api_base
|
|
self.client.api_key = self.api_key
|
|
for named_api_key in [
|
|
"openai_api_key",
|
|
"azure_api_key",
|
|
"anthropic_api_key",
|
|
"replicate_api_key",
|
|
"cohere_api_key",
|
|
"openrouter_api_key",
|
|
]:
|
|
if api_key_value := getattr(self, named_api_key):
|
|
setattr(
|
|
self.client,
|
|
named_api_key.replace("_api_key", "_key"),
|
|
api_key_value,
|
|
)
|
|
self.client.organization = self.organization
|
|
creds: Dict[str, Any] = {
|
|
"model": set_model_value,
|
|
"force_timeout": self.request_timeout,
|
|
"api_base": self.api_base,
|
|
}
|
|
return {**self._default_params, **creds}
|
|
|
|
def completion_with_retry(
|
|
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
|
|
) -> Any:
|
|
"""Use tenacity to retry the completion call."""
|
|
retry_decorator = _create_retry_decorator(self, run_manager=run_manager)
|
|
|
|
@retry_decorator
|
|
def _completion_with_retry(**kwargs: Any) -> Any:
|
|
return self.client.completion(**kwargs)
|
|
|
|
return _completion_with_retry(**kwargs)
|
|
|
|
@pre_init
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate api key, python package exists, temperature, top_p, and top_k."""
|
|
try:
|
|
import litellm
|
|
except ImportError:
|
|
raise ChatLiteLLMException(
|
|
"Could not import litellm python package. "
|
|
"Please install it with `pip install litellm`"
|
|
)
|
|
|
|
values["openai_api_key"] = get_from_dict_or_env(
|
|
values, "openai_api_key", "OPENAI_API_KEY", default=""
|
|
)
|
|
values["azure_api_key"] = get_from_dict_or_env(
|
|
values, "azure_api_key", "AZURE_API_KEY", default=""
|
|
)
|
|
values["anthropic_api_key"] = get_from_dict_or_env(
|
|
values, "anthropic_api_key", "ANTHROPIC_API_KEY", default=""
|
|
)
|
|
values["replicate_api_key"] = get_from_dict_or_env(
|
|
values, "replicate_api_key", "REPLICATE_API_KEY", default=""
|
|
)
|
|
values["openrouter_api_key"] = get_from_dict_or_env(
|
|
values, "openrouter_api_key", "OPENROUTER_API_KEY", default=""
|
|
)
|
|
values["cohere_api_key"] = get_from_dict_or_env(
|
|
values, "cohere_api_key", "COHERE_API_KEY", default=""
|
|
)
|
|
values["huggingface_api_key"] = get_from_dict_or_env(
|
|
values, "huggingface_api_key", "HUGGINGFACE_API_KEY", default=""
|
|
)
|
|
values["together_ai_api_key"] = get_from_dict_or_env(
|
|
values, "together_ai_api_key", "TOGETHERAI_API_KEY", default=""
|
|
)
|
|
values["client"] = litellm
|
|
|
|
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
|
|
raise ValueError("temperature must be in the range [0.0, 1.0]")
|
|
|
|
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
|
|
raise ValueError("top_p must be in the range [0.0, 1.0]")
|
|
|
|
if values["top_k"] is not None and values["top_k"] <= 0:
|
|
raise ValueError("top_k must be positive")
|
|
|
|
return values
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
should_stream = stream if stream is not None else self.streaming
|
|
if should_stream:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs}
|
|
response = self.completion_with_retry(
|
|
messages=message_dicts, run_manager=run_manager, **params
|
|
)
|
|
return self._create_chat_result(response)
|
|
|
|
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
|
|
generations = []
|
|
token_usage = response.get("usage", {})
|
|
for res in response["choices"]:
|
|
message = _convert_dict_to_message(res["message"])
|
|
if isinstance(message, AIMessage):
|
|
message.response_metadata = {
|
|
"model_name": self.model_name or self.model
|
|
}
|
|
message.usage_metadata = _create_usage_metadata(token_usage)
|
|
gen = ChatGeneration(
|
|
message=message,
|
|
generation_info=dict(finish_reason=res.get("finish_reason")),
|
|
)
|
|
generations.append(gen)
|
|
set_model_value = self.model
|
|
if self.model_name is not None:
|
|
set_model_value = self.model_name
|
|
llm_output = {"token_usage": token_usage, "model": set_model_value}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
def _create_message_dicts(
|
|
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
|
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
|
params = self._client_params
|
|
if stop is not None:
|
|
if "stop" in params:
|
|
raise ValueError("`stop` found in both the input and default params.")
|
|
params["stop"] = stop
|
|
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
|
return message_dicts, params
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
added_model_name = False
|
|
for chunk in self.completion_with_retry(
|
|
messages=message_dicts, run_manager=run_manager, **params
|
|
):
|
|
if not isinstance(chunk, dict):
|
|
chunk = chunk.model_dump()
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
delta = chunk["choices"][0]["delta"]
|
|
usage = chunk.get("usage", {})
|
|
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
|
|
if isinstance(chunk, AIMessageChunk):
|
|
if not added_model_name:
|
|
chunk.response_metadata = {
|
|
"model_name": self.model_name or self.model
|
|
}
|
|
added_model_name = True
|
|
chunk.usage_metadata = _create_usage_metadata(usage)
|
|
default_chunk_class = chunk.__class__
|
|
cg_chunk = ChatGenerationChunk(message=chunk)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
|
|
yield cg_chunk
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
added_model_name = False
|
|
async for chunk in await acompletion_with_retry(
|
|
self, messages=message_dicts, run_manager=run_manager, **params
|
|
):
|
|
if not isinstance(chunk, dict):
|
|
chunk = chunk.model_dump()
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
delta = chunk["choices"][0]["delta"]
|
|
usage = chunk.get("usage", {})
|
|
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
|
|
if isinstance(chunk, AIMessageChunk):
|
|
if not added_model_name:
|
|
chunk.response_metadata = {
|
|
"model_name": self.model_name or self.model
|
|
}
|
|
added_model_name = True
|
|
chunk.usage_metadata = _create_usage_metadata(usage)
|
|
default_chunk_class = chunk.__class__
|
|
cg_chunk = ChatGenerationChunk(message=chunk)
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
|
|
yield cg_chunk
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
should_stream = stream if stream is not None else self.streaming
|
|
if should_stream:
|
|
stream_iter = self._astream(
|
|
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return await agenerate_from_stream(stream_iter)
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs}
|
|
response = await acompletion_with_retry(
|
|
self, messages=message_dicts, run_manager=run_manager, **params
|
|
)
|
|
return self._create_chat_result(response)
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
tool_choice: Optional[
|
|
Union[dict, str, Literal["auto", "none", "required", "any"], bool]
|
|
] = None,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Bind tool-like objects to this chat model.
|
|
|
|
LiteLLM expects tools argument in OpenAI format.
|
|
|
|
Args:
|
|
tools: A list of tool definitions to bind to this chat model.
|
|
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
|
|
models, callables, and BaseTools will be automatically converted to
|
|
their schema dictionary representation.
|
|
tool_choice: Which tool to require the model to call. Options are:
|
|
- str of the form ``"<<tool_name>>"``: calls <<tool_name>> tool.
|
|
- ``"auto"``:
|
|
automatically selects a tool (including no tool).
|
|
- ``"none"``:
|
|
does not call a tool.
|
|
- ``"any"`` or ``"required"`` or ``True``:
|
|
forces least one tool to be called.
|
|
- dict of the form:
|
|
``{"type": "function", "function": {"name": <<tool_name>>}}``
|
|
- ``False`` or ``None``: no effect
|
|
**kwargs: Any additional parameters to pass to the
|
|
:class:`~langchain.runnable.Runnable` constructor.
|
|
"""
|
|
|
|
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
|
|
|
# In case of openai if tool_choice is `any` or if bool has been provided we
|
|
# change it to `required` as that is suppored by openai.
|
|
if (
|
|
(self.model is not None and "azure" in self.model)
|
|
or (self.model_name is not None and "azure" in self.model_name)
|
|
or (self.model is not None and self.model in _OPENAI_MODELS)
|
|
or (self.model_name is not None and self.model_name in _OPENAI_MODELS)
|
|
) and (tool_choice == "any" or isinstance(tool_choice, bool)):
|
|
tool_choice = "required"
|
|
# If tool_choice is bool apart from openai we make it `any`
|
|
elif isinstance(tool_choice, bool):
|
|
tool_choice = "any"
|
|
elif isinstance(tool_choice, dict):
|
|
tool_names = [
|
|
formatted_tool["function"]["name"] for formatted_tool in formatted_tools
|
|
]
|
|
if not any(
|
|
tool_name == tool_choice["function"]["name"] for tool_name in tool_names
|
|
):
|
|
raise ValueError(
|
|
f"Tool choice {tool_choice} was specified, but the only "
|
|
f"provided tools were {tool_names}."
|
|
)
|
|
return super().bind(tools=formatted_tools, tool_choice=tool_choice, **kwargs)
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
set_model_value = self.model
|
|
if self.model_name is not None:
|
|
set_model_value = self.model_name
|
|
return {
|
|
"model": set_model_value,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
"top_k": self.top_k,
|
|
"n": self.n,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "litellm-chat"
|
|
|
|
|
|
def _create_usage_metadata(token_usage: Mapping[str, Any]) -> UsageMetadata:
|
|
input_tokens = token_usage.get("prompt_tokens", 0)
|
|
output_tokens = token_usage.get("completion_tokens", 0)
|
|
return UsageMetadata(
|
|
input_tokens=input_tokens,
|
|
output_tokens=output_tokens,
|
|
total_tokens=input_tokens + output_tokens,
|
|
)
|