mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-04 14:13:29 +00:00
Added missed docstrings. Formatted docstrings to the consistent form. --------- Co-authored-by: ccurme <chester.curme@gmail.com>
94 lines
3.4 KiB
Python
94 lines
3.4 KiB
Python
"""Spark SQL agent."""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
|
|
|
from langchain_core.callbacks import BaseCallbackManager, Callbacks
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
|
|
from langchain_community.agent_toolkits.spark_sql.prompt import SQL_PREFIX, SQL_SUFFIX
|
|
from langchain_community.agent_toolkits.spark_sql.toolkit import SparkSQLToolkit
|
|
|
|
if TYPE_CHECKING:
|
|
from langchain.agents.agent import AgentExecutor
|
|
|
|
|
|
def create_spark_sql_agent(
|
|
llm: BaseLanguageModel,
|
|
toolkit: SparkSQLToolkit,
|
|
callback_manager: Optional[BaseCallbackManager] = None,
|
|
callbacks: Callbacks = None,
|
|
prefix: str = SQL_PREFIX,
|
|
suffix: str = SQL_SUFFIX,
|
|
format_instructions: Optional[str] = None,
|
|
input_variables: Optional[List[str]] = None,
|
|
top_k: int = 10,
|
|
max_iterations: Optional[int] = 15,
|
|
max_execution_time: Optional[float] = None,
|
|
early_stopping_method: str = "force",
|
|
verbose: bool = False,
|
|
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
) -> AgentExecutor:
|
|
"""Construct a Spark SQL agent from an LLM and tools.
|
|
|
|
Args:
|
|
llm: The language model to use.
|
|
toolkit: The Spark SQL toolkit.
|
|
callback_manager: Optional. The callback manager. Default is None.
|
|
callbacks: Optional. The callbacks. Default is None.
|
|
prefix: Optional. The prefix for the prompt. Default is SQL_PREFIX.
|
|
suffix: Optional. The suffix for the prompt. Default is SQL_SUFFIX.
|
|
format_instructions: Optional. The format instructions for the prompt.
|
|
Default is None.
|
|
input_variables: Optional. The input variables for the prompt. Default is None.
|
|
top_k: Optional. The top k for the prompt. Default is 10.
|
|
max_iterations: Optional. The maximum iterations to run. Default is 15.
|
|
max_execution_time: Optional. The maximum execution time. Default is None.
|
|
early_stopping_method: Optional. The early stopping method. Default is "force".
|
|
verbose: Optional. Whether to print verbose output. Default is False.
|
|
agent_executor_kwargs: Optional. The agent executor kwargs. Default is None.
|
|
kwargs: Any. Additional keyword arguments.
|
|
|
|
Returns:
|
|
The agent executor.
|
|
"""
|
|
from langchain.agents.agent import AgentExecutor
|
|
from langchain.agents.mrkl.base import ZeroShotAgent
|
|
from langchain.chains.llm import LLMChain
|
|
|
|
tools = toolkit.get_tools()
|
|
prefix = prefix.format(top_k=top_k)
|
|
prompt_params = (
|
|
{"format_instructions": format_instructions}
|
|
if format_instructions is not None
|
|
else {}
|
|
)
|
|
prompt = ZeroShotAgent.create_prompt(
|
|
tools,
|
|
prefix=prefix,
|
|
suffix=suffix,
|
|
input_variables=input_variables,
|
|
**prompt_params,
|
|
)
|
|
llm_chain = LLMChain(
|
|
llm=llm,
|
|
prompt=prompt,
|
|
callback_manager=callback_manager,
|
|
callbacks=callbacks,
|
|
)
|
|
tool_names = [tool.name for tool in tools]
|
|
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
|
|
return AgentExecutor.from_agent_and_tools(
|
|
agent=agent,
|
|
tools=tools,
|
|
callback_manager=callback_manager,
|
|
callbacks=callbacks,
|
|
verbose=verbose,
|
|
max_iterations=max_iterations,
|
|
max_execution_time=max_execution_time,
|
|
early_stopping_method=early_stopping_method,
|
|
**(agent_executor_kwargs or {}),
|
|
)
|