mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-18 05:21:21 +00:00
This PR adds a new method `from_es_connection` to the `ElasticsearchEmbeddings` class allowing users to use Elasticsearch clusters outside of Elastic Cloud. Users can create an Elasticsearch Client object and pass that to the new function. The returned object is identical to the one returned by calling `from_credentials` ``` # Create Elasticsearch connection es_connection = Elasticsearch( hosts=['https://es_cluster_url:port'], basic_auth=('user', 'password') ) # Instantiate ElasticsearchEmbeddings using es_connection embeddings = ElasticsearchEmbeddings.from_es_connection( model_id, es_connection, ) ``` I also added examples to the elasticsearch jupyter notebook Fixes # https://github.com/hwchase17/langchain/issues/5239 --------- Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
253 lines
5.6 KiB
Plaintext
253 lines
5.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "1eZl1oaVUNeC"
|
|
},
|
|
"source": [
|
|
"# Elasticsearch\n",
|
|
"Walkthrough of how to generate embeddings using a hosted embedding model in Elasticsearch\n",
|
|
"\n",
|
|
"The easiest way to instantiate the `ElasticsearchEmebddings` class it either\n",
|
|
"- using the `from_credentials` constructor if you are using Elastic Cloud\n",
|
|
"- or using the `from_es_connection` constructor with any Elasticsearch cluster"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "6dJxqebov4eU"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip -q install elasticsearch langchain"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "RV7C3DUmv4aq"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import elasticsearch\n",
|
|
"from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "MrT3jplJvp09"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Define the model ID\n",
|
|
"model_id = 'your_model_id'"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "j5F-nwLVS_Zu"
|
|
},
|
|
"source": [
|
|
"## Testing with `from_credentials`\n",
|
|
"This required an Elastic Cloud `cloud_id`"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "svtdnC-dvpxR"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Instantiate ElasticsearchEmbeddings using credentials\n",
|
|
"embeddings = ElasticsearchEmbeddings.from_credentials(\n",
|
|
" model_id,\n",
|
|
" es_cloud_id='your_cloud_id', \n",
|
|
" es_user='your_user', \n",
|
|
" es_password='your_password'\n",
|
|
")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "7DXZAK7Kvpth"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create embeddings for multiple documents\n",
|
|
"documents = [\n",
|
|
" 'This is an example document.', \n",
|
|
" 'Another example document to generate embeddings for.'\n",
|
|
"]\n",
|
|
"document_embeddings = embeddings.embed_documents(documents)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "K8ra75W_vpqy"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Print document embeddings\n",
|
|
"for i, embedding in enumerate(document_embeddings):\n",
|
|
" print(f\"Embedding for document {i+1}: {embedding}\")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "V4Q5kQo9vpna"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create an embedding for a single query\n",
|
|
"query = 'This is a single query.'\n",
|
|
"query_embedding = embeddings.embed_query(query)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "O0oQDzGKvpkz"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Print query embedding\n",
|
|
"print(f\"Embedding for query: {query_embedding}\")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "rHN03yV6TJ5q"
|
|
},
|
|
"source": [
|
|
"## Testing with Existing Elasticsearch client connection\n",
|
|
"This can be used with any Elasticsearch deployment"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "GMQcJDwBTJFm"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create Elasticsearch connection\n",
|
|
"es_connection = Elasticsearch(\n",
|
|
" hosts=['https://es_cluster_url:port'], \n",
|
|
" basic_auth=('user', 'password')\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "WTYIU4u3TJO1"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Instantiate ElasticsearchEmbeddings using es_connection\n",
|
|
"embeddings = ElasticsearchEmbeddings.from_es_connection(\n",
|
|
" model_id,\n",
|
|
" es_connection,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "4gdAUHwoTJO3"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create embeddings for multiple documents\n",
|
|
"documents = [\n",
|
|
" 'This is an example document.', \n",
|
|
" 'Another example document to generate embeddings for.'\n",
|
|
"]\n",
|
|
"document_embeddings = embeddings.embed_documents(documents)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "RC_-tov6TJO3"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Print document embeddings\n",
|
|
"for i, embedding in enumerate(document_embeddings):\n",
|
|
" print(f\"Embedding for document {i+1}: {embedding}\")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "6GEnHBqETJO3"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create an embedding for a single query\n",
|
|
"query = 'This is a single query.'\n",
|
|
"query_embedding = embeddings.embed_query(query)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "-kyUQAXDTJO4"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Print query embedding\n",
|
|
"print(f\"Embedding for query: {query_embedding}\")\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"colab": {
|
|
"provenance": []
|
|
},
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
}
|