Files
langchain/templates/cassandra-synonym-caching/cassandra_synonym_caching/__init__.py
Bagatur 480626dc99 docs, community[patch], experimental[patch], langchain[patch], cli[pa… (#15412)
…tch]: import models from community

ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
2024-01-02 15:32:16 -05:00

43 lines
1.1 KiB
Python

import os
import cassio
import langchain
from langchain.cache import CassandraCache
from langchain.prompts import ChatPromptTemplate
from langchain.schema import BaseMessage
from langchain_community.chat_models import ChatOpenAI
from langchain_core.runnables import RunnableLambda
use_cassandra = int(os.environ.get("USE_CASSANDRA_CLUSTER", "0"))
if use_cassandra:
from .cassandra_cluster_init import get_cassandra_connection
session, keyspace = get_cassandra_connection()
cassio.init(
session=session,
keyspace=keyspace,
)
else:
cassio.init(
token=os.environ["ASTRA_DB_APPLICATION_TOKEN"],
database_id=os.environ["ASTRA_DB_ID"],
keyspace=os.environ.get("ASTRA_DB_KEYSPACE"),
)
# inits
langchain.llm_cache = CassandraCache(session=None, keyspace=None)
llm = ChatOpenAI()
# custom runnables
def msg_splitter(msg: BaseMessage):
return [w.strip() for w in msg.content.split(",") if w.strip()]
# synonym-route preparation
synonym_prompt = ChatPromptTemplate.from_template(
"List up to five comma-separated synonyms of this word: {word}"
)
chain = synonym_prompt | llm | RunnableLambda(msg_splitter)