langchain/libs/community/tests/integration_tests/chat_models/test_litellm.py
ccurme 481d3855dc
patch: remove usage of llm, chat model __call__ (#20788)
- `llm(prompt)` -> `llm.invoke(prompt)`
- `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`)
- `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt,
config={"callbacks": callbacks})`
- `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
2024-04-24 19:39:23 -04:00

63 lines
2.1 KiB
Python

"""Test Anthropic API wrapper."""
from typing import List
from langchain_core.callbacks import (
CallbackManager,
)
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_community.chat_models.litellm import ChatLiteLLM
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
def test_litellm_call() -> None:
"""Test valid call to litellm."""
chat = ChatLiteLLM(
model="test",
)
message = HumanMessage(content="Hello")
response = chat.invoke([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_litellm_generate() -> None:
"""Test generate method of anthropic."""
chat = ChatLiteLLM(model="test")
chat_messages: List[List[BaseMessage]] = [
[HumanMessage(content="How many toes do dogs have?")]
]
messages_copy = [messages.copy() for messages in chat_messages]
result: LLMResult = chat.generate(chat_messages)
assert isinstance(result, LLMResult)
for response in result.generations[0]:
assert isinstance(response, ChatGeneration)
assert isinstance(response.text, str)
assert response.text == response.message.content
assert chat_messages == messages_copy
def test_litellm_streaming() -> None:
"""Test streaming tokens from anthropic."""
chat = ChatLiteLLM(model="test", streaming=True)
message = HumanMessage(content="Hello")
response = chat.invoke([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_litellm_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatLiteLLM(
model="test",
streaming=True,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Write me a sentence with 10 words.")
chat.invoke([message])
assert callback_handler.llm_streams > 1