langchain/docs/docs/integrations/text_embedding/llamafile.ipynb
Kate Silverstein b7c71e2e07
community[minor]: llamafile embeddings support (#17976)
* **Description:** adds `LlamafileEmbeddings` class implementation for
generating embeddings using
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
Includes related unit tests and notebook showing example usage.
* **Issue:** N/A
* **Dependencies:** N/A
2024-03-01 13:49:18 -08:00

158 lines
4.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "278b6c63",
"metadata": {},
"source": [
"# llamafile\n",
"\n",
"Let's load the [llamafile](https://github.com/Mozilla-Ocho/llamafile) Embeddings class.\n",
"\n",
"## Setup\n",
"\n",
"First, the are 3 setup steps:\n",
"\n",
"1. Download a llamafile. In this notebook, we use `TinyLlama-1.1B-Chat-v1.0.Q5_K_M` but there are many others available on [HuggingFace](https://huggingface.co/models?other=llamafile).\n",
"2. Make the llamafile executable.\n",
"3. Start the llamafile in server mode.\n",
"\n",
"You can run the following bash script to do all this:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "43ef6dfa-9cc4-4552-8a53-5df523afae7c",
"metadata": {},
"outputs": [],
"source": [
"%%bash\n",
"# llamafile setup\n",
"\n",
"# Step 1: Download a llamafile. The download may take several minutes.\n",
"wget -nv -nc https://huggingface.co/jartine/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile\n",
"\n",
"# Step 2: Make the llamafile executable. Note: if you're on Windows, just append '.exe' to the filename.\n",
"chmod +x TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile\n",
"\n",
"# Step 3: Start llamafile server in background. All the server logs will be written to 'tinyllama.log'.\n",
"# Alternatively, you can just open a separate terminal outside this notebook and run: \n",
"# ./TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile --server --nobrowser --embedding\n",
"./TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile --server --nobrowser --embedding > tinyllama.log 2>&1 &\n",
"pid=$!\n",
"echo \"${pid}\" > .llamafile_pid # write the process pid to a file so we can terminate the server later"
]
},
{
"cell_type": "markdown",
"id": "3188b22f-879f-47b3-9a27-24412f6fad5f",
"metadata": {},
"source": [
"## Embedding texts using LlamafileEmbeddings\n",
"\n",
"Now, we can use the `LlamafileEmbeddings` class to interact with the llamafile server that's currently serving our TinyLlama model at http://localhost:8080."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0be1af71",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings import LlamafileEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2c66e5da",
"metadata": {},
"outputs": [],
"source": [
"embedder = LlamafileEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "01370375",
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\""
]
},
{
"cell_type": "markdown",
"id": "a42e4035",
"metadata": {},
"source": [
"To generate embeddings, you can either query an invidivual text, or you can query a list of texts."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "91bc875d-829b-4c3d-8e6f-fc2dda30a3bd",
"metadata": {},
"outputs": [],
"source": [
"query_result = embedder.embed_query(text)\n",
"query_result[:5]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a4b0d49e-0c73-44b6-aed5-5b426564e085",
"metadata": {},
"outputs": [],
"source": [
"doc_result = embedder.embed_documents([text])\n",
"doc_result[0][:5]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1ccc78fc-03ae-411d-ae73-74a4ee91c725",
"metadata": {},
"outputs": [],
"source": [
"%%bash\n",
"# cleanup: kill the llamafile server process\n",
"kill $(cat .llamafile_pid)\n",
"rm .llamafile_pid"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
},
"vscode": {
"interpreter": {
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}