mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-11 01:56:12 +00:00
This can only be reviewed by [hiding whitespaces](https://github.com/langchain-ai/langchain/pull/30302/files?diff=unified&w=1). The motivation behind this PR is to get my hands on the docs and make the LangSmith teasing short and clear. Right now I don't know how to do it, but this could be an include in the future. --------- Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
286 lines
9.3 KiB
Plaintext
286 lines
9.3 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "raw",
|
|
"id": "afaf8039",
|
|
"metadata": {},
|
|
"source": [
|
|
"---\n",
|
|
"sidebar_label: Nomic\n",
|
|
"---"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9a3d6f34",
|
|
"metadata": {},
|
|
"source": [
|
|
"# NomicEmbeddings\n",
|
|
"\n",
|
|
"This will help you get started with Nomic embedding models using LangChain. For detailed documentation on `NomicEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/nomic/embeddings/langchain_nomic.embeddings.NomicEmbeddings.html).\n",
|
|
"\n",
|
|
"## Overview\n",
|
|
"### Integration details\n",
|
|
"\n",
|
|
"import { ItemTable } from \"@theme/FeatureTables\";\n",
|
|
"\n",
|
|
"<ItemTable category=\"text_embedding\" item=\"Nomic\" />\n",
|
|
"\n",
|
|
"## Setup\n",
|
|
"\n",
|
|
"To access Nomic embedding models you'll need to create a/an Nomic account, get an API key, and install the `langchain-nomic` integration package.\n",
|
|
"\n",
|
|
"### Credentials\n",
|
|
"\n",
|
|
"Head to [https://atlas.nomic.ai/](https://atlas.nomic.ai/) to sign up to Nomic and generate an API key. Once you've done this set the `NOMIC_API_KEY` environment variable:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "36521c2a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import getpass\n",
|
|
"import os\n",
|
|
"\n",
|
|
"if not os.getenv(\"NOMIC_API_KEY\"):\n",
|
|
" os.environ[\"NOMIC_API_KEY\"] = getpass.getpass(\"Enter your Nomic API key: \")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c84fb993",
|
|
"metadata": {},
|
|
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "39a4953b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
|
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "d9664366",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Installation\n",
|
|
"\n",
|
|
"The LangChain Nomic integration lives in the `langchain-nomic` package:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "64853226",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Note: you may need to restart the kernel to use updated packages.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%pip install -qU langchain-nomic"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "45dd1724",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Instantiation\n",
|
|
"\n",
|
|
"Now we can instantiate our model object and generate chat completions:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "9ea7a09b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain_nomic import NomicEmbeddings\n",
|
|
"\n",
|
|
"embeddings = NomicEmbeddings(\n",
|
|
" model=\"nomic-embed-text-v1.5\",\n",
|
|
" # dimensionality=256,\n",
|
|
" # Nomic's `nomic-embed-text-v1.5` model was [trained with Matryoshka learning](https://blog.nomic.ai/posts/nomic-embed-matryoshka)\n",
|
|
" # to enable variable-length embeddings with a single model.\n",
|
|
" # This means that you can specify the dimensionality of the embeddings at inference time.\n",
|
|
" # The model supports dimensionality from 64 to 768.\n",
|
|
" # inference_mode=\"remote\",\n",
|
|
" # One of `remote`, `local` (Embed4All), or `dynamic` (automatic). Defaults to `remote`.\n",
|
|
" # api_key=... , # if using remote inference,\n",
|
|
" # device=\"cpu\",\n",
|
|
" # The device to use for local embeddings. Choices include\n",
|
|
" # `cpu`, `gpu`, `nvidia`, `amd`, or a specific device name. See\n",
|
|
" # the docstring for `GPT4All.__init__` for more info. Typically\n",
|
|
" # defaults to CPU. Do not use on macOS.\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "77d271b6",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Indexing and Retrieval\n",
|
|
"\n",
|
|
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
|
|
"\n",
|
|
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "d817716b",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'LangChain is the framework for building context-aware reasoning applications'"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Create a vector store with a sample text\n",
|
|
"from langchain_core.vectorstores import InMemoryVectorStore\n",
|
|
"\n",
|
|
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
|
|
"\n",
|
|
"vectorstore = InMemoryVectorStore.from_texts(\n",
|
|
" [text],\n",
|
|
" embedding=embeddings,\n",
|
|
")\n",
|
|
"\n",
|
|
"# Use the vectorstore as a retriever\n",
|
|
"retriever = vectorstore.as_retriever()\n",
|
|
"\n",
|
|
"# Retrieve the most similar text\n",
|
|
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
|
|
"\n",
|
|
"# show the retrieved document's content\n",
|
|
"retrieved_documents[0].page_content"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "e02b9855",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Direct Usage\n",
|
|
"\n",
|
|
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
|
|
"\n",
|
|
"You can directly call these methods to get embeddings for your own use cases.\n",
|
|
"\n",
|
|
"### Embed single texts\n",
|
|
"\n",
|
|
"You can embed single texts or documents with `embed_query`:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "0d2befcd",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[0.024642944, 0.029083252, -0.14013672, -0.09082031, 0.058898926, -0.07489014, -0.0138168335, 0.0037\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"single_vector = embeddings.embed_query(text)\n",
|
|
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "1b5a7d03",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Embed multiple texts\n",
|
|
"\n",
|
|
"You can embed multiple texts with `embed_documents`:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "2f4d6e97",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[0.012771606, 0.023727417, -0.12365723, -0.083740234, 0.06530762, -0.07110596, -0.021896362, -0.0068\n",
|
|
"[-0.019058228, 0.04058838, -0.15222168, -0.06842041, -0.012130737, -0.07128906, -0.04534912, 0.00522\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"text2 = (\n",
|
|
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
|
|
")\n",
|
|
"two_vectors = embeddings.embed_documents([text, text2])\n",
|
|
"for vector in two_vectors:\n",
|
|
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "98785c12",
|
|
"metadata": {},
|
|
"source": [
|
|
"## API Reference\n",
|
|
"\n",
|
|
"For detailed documentation on `NomicEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/nomic/embeddings/langchain_nomic.embeddings.NomicEmbeddings.html).\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|