langchain/docs/docs/integrations/document_transformers/jina_rerank.ipynb
Erick Friis c2a3021bb0
multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
2024-09-13 14:38:45 -07:00

255 lines
7.0 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "f6ff09ab-c736-4a18-a717-563b4e29d22d",
"metadata": {},
"source": [
"# Jina Reranker"
]
},
{
"cell_type": "markdown",
"id": "1288789a-4c30-4fc3-90c7-dd1741a2550b",
"metadata": {},
"source": [
"This notebook shows how to use Jina Reranker for document compression and retrieval."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0e4d52e-3968-4f8b-9865-a886f27e5feb",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain langchain-openai langchain-community langchain-text-splitters langchainhub\n",
"\n",
"%pip install --upgrade --quiet faiss\n",
"\n",
"# OR (depending on Python version)\n",
"\n",
"%pip install --upgrade --quiet faiss_cpu"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d1fc07a6-8e01-4aa5-8ed4-ca2b0bfca70c",
"metadata": {},
"outputs": [],
"source": [
"# Helper function for printing docs\n",
"\n",
"\n",
"def pretty_print_docs(docs):\n",
" print(\n",
" f\"\\n{'-' * 100}\\n\".join(\n",
" [f\"Document {i+1}:\\n\\n\" + d.page_content for i, d in enumerate(docs)]\n",
" )\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "d8ec4823-fdc1-4339-8a25-da598a1e2a4c",
"metadata": {},
"source": [
"## Set up the base vector store retriever"
]
},
{
"cell_type": "markdown",
"id": "9db25269-e798-496f-8fb9-2bb280735118",
"metadata": {},
"source": [
"Let's start by initializing a simple vector store retriever and storing the 2023 State of the Union speech (in chunks). We can set up the retriever to retrieve a high number (20) of docs."
]
},
{
"cell_type": "markdown",
"id": "ce01a2b5-d7f4-4902-9156-9a3a86704f40",
"metadata": {},
"source": [
"##### Set the Jina and OpenAI API keys"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6692d5c5-c84a-4d42-8dd8-5ce90ff56d20",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n",
"os.environ[\"JINA_API_KEY\"] = getpass.getpass()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "981159af-fa3c-4f75-adb4-1a4de1950f2f",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import TextLoader\n",
"from langchain_community.embeddings import JinaEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
"\n",
"documents = TextLoader(\n",
" \"../../how_to/state_of_the_union.txt\",\n",
").load()\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)\n",
"texts = text_splitter.split_documents(documents)\n",
"\n",
"embedding = JinaEmbeddings(model_name=\"jina-embeddings-v2-base-en\")\n",
"retriever = FAISS.from_documents(texts, embedding).as_retriever(search_kwargs={\"k\": 20})\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = retriever.get_relevant_documents(query)\n",
"pretty_print_docs(docs)"
]
},
{
"cell_type": "markdown",
"id": "b5a514b7-027a-4dd4-9cfc-63fb4d50aa66",
"metadata": {},
"source": [
"## Doing reranking with JinaRerank"
]
},
{
"cell_type": "markdown",
"id": "bdd9e0ca-d728-42cb-88ad-459fb8a56b33",
"metadata": {},
"source": [
"Now let's wrap our base retriever with a ContextualCompressionRetriever, using Jina Reranker as a compressor."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3000019e-cc0d-4365-91d0-72247ee4d624",
"metadata": {},
"outputs": [],
"source": [
"from langchain.retrievers import ContextualCompressionRetriever\n",
"from langchain_community.document_compressors import JinaRerank\n",
"\n",
"compressor = JinaRerank()\n",
"compression_retriever = ContextualCompressionRetriever(\n",
" base_compressor=compressor, base_retriever=retriever\n",
")\n",
"\n",
"compressed_docs = compression_retriever.get_relevant_documents(\n",
" \"What did the president say about Ketanji Jackson Brown\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f314f74c-48a9-4243-8d3c-2b7f820e1e40",
"metadata": {},
"outputs": [],
"source": [
"pretty_print_docs(compressed_docs)"
]
},
{
"cell_type": "markdown",
"id": "87164f04-194b-4138-8d94-f179f6f34a31",
"metadata": {},
"source": [
"## QA reranking with Jina Reranker"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "2b4ab60b-5a26-4cfb-9b58-3dc2d83b772b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m System Message \u001b[0m================================\n",
"\n",
"Answer any use questions based solely on the context below:\n",
"\n",
"<context>\n",
"\u001b[33;1m\u001b[1;3m{context}\u001b[0m\n",
"</context>\n",
"\n",
"=============================\u001b[1m Messages Placeholder \u001b[0m=============================\n",
"\n",
"\u001b[33;1m\u001b[1;3m{chat_history}\u001b[0m\n",
"\n",
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"\u001b[33;1m\u001b[1;3m{input}\u001b[0m\n"
]
}
],
"source": [
"from langchain import hub\n",
"from langchain.chains import create_retrieval_chain\n",
"from langchain.chains.combine_documents import create_stuff_documents_chain\n",
"\n",
"retrieval_qa_chat_prompt = hub.pull(\"langchain-ai/retrieval-qa-chat\")\n",
"retrieval_qa_chat_prompt.pretty_print()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "72af3eb3-b644-4b5f-bf5f-f1dc43c96882",
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n",
"combine_docs_chain = create_stuff_documents_chain(llm, retrieval_qa_chat_prompt)\n",
"chain = create_retrieval_chain(compression_retriever, combine_docs_chain)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "126401a7-c545-4de0-92dc-e9bc1001a6ba",
"metadata": {},
"outputs": [],
"source": [
"chain.invoke({\"input\": query})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-2",
"language": "python",
"name": "poetry-venv-2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}