mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-31 12:09:58 +00:00
This PR implements a basic metadata filtering mechanism similar to the ones in Chroma and Pinecone. It still cannot express complex conditions, as there are no operators, but some users requested to have that feature available.
101 lines
3.2 KiB
Python
101 lines
3.2 KiB
Python
"""Test Qdrant functionality."""
|
|
import pytest
|
|
|
|
from langchain.docstore.document import Document
|
|
from langchain.vectorstores import Qdrant
|
|
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["content_payload_key", "metadata_payload_key"],
|
|
[
|
|
(Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY),
|
|
("foo", "bar"),
|
|
(Qdrant.CONTENT_KEY, "bar"),
|
|
("foo", Qdrant.METADATA_KEY),
|
|
],
|
|
)
|
|
def test_qdrant(content_payload_key: str, metadata_payload_key: str) -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = Qdrant.from_texts(
|
|
texts,
|
|
FakeEmbeddings(),
|
|
host="localhost",
|
|
content_payload_key=content_payload_key,
|
|
metadata_payload_key=metadata_payload_key,
|
|
)
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo")]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["content_payload_key", "metadata_payload_key"],
|
|
[
|
|
(Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY),
|
|
("test_content", "test_payload"),
|
|
(Qdrant.CONTENT_KEY, "payload_test"),
|
|
("content_test", Qdrant.METADATA_KEY),
|
|
],
|
|
)
|
|
def test_qdrant_with_metadatas(
|
|
content_payload_key: str, metadata_payload_key: str
|
|
) -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": i} for i in range(len(texts))]
|
|
docsearch = Qdrant.from_texts(
|
|
texts,
|
|
FakeEmbeddings(),
|
|
metadatas=metadatas,
|
|
host="localhost",
|
|
content_payload_key=content_payload_key,
|
|
metadata_payload_key=metadata_payload_key,
|
|
)
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo", metadata={"page": 0})]
|
|
|
|
|
|
def test_qdrant_similarity_search_filters() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": i} for i in range(len(texts))]
|
|
docsearch = Qdrant.from_texts(
|
|
texts,
|
|
FakeEmbeddings(),
|
|
metadatas=metadatas,
|
|
host="localhost",
|
|
)
|
|
output = docsearch.similarity_search("foo", k=1, filter={"page": 1})
|
|
assert output == [Document(page_content="bar", metadata={"page": 1})]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["content_payload_key", "metadata_payload_key"],
|
|
[
|
|
(Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY),
|
|
("test_content", "test_payload"),
|
|
(Qdrant.CONTENT_KEY, "payload_test"),
|
|
("content_test", Qdrant.METADATA_KEY),
|
|
],
|
|
)
|
|
def test_qdrant_max_marginal_relevance_search(
|
|
content_payload_key: str, metadata_payload_key: str
|
|
) -> None:
|
|
"""Test end to end construction and MRR search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": i} for i in range(len(texts))]
|
|
docsearch = Qdrant.from_texts(
|
|
texts,
|
|
FakeEmbeddings(),
|
|
metadatas=metadatas,
|
|
host="localhost",
|
|
content_payload_key=content_payload_key,
|
|
metadata_payload_key=metadata_payload_key,
|
|
)
|
|
output = docsearch.max_marginal_relevance_search("foo", k=2, fetch_k=3)
|
|
assert output == [
|
|
Document(page_content="foo", metadata={"page": 0}),
|
|
Document(page_content="bar", metadata={"page": 1}),
|
|
]
|