mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-30 23:29:54 +00:00 
			
		
		
		
	- chat models, messages - documents - agentaction/finish - baseretriever,document - stroutputparser - more messages - basemessage - format_document - baseoutputparser --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
		
			
				
	
	
		
			221 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "ba5f8741",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Custom multi-action agent\n",
 | |
|     "\n",
 | |
|     "This notebook goes through how to create your own custom agent.\n",
 | |
|     "\n",
 | |
|     "An agent consists of two parts:\n",
 | |
|     "\n",
 | |
|     "- Tools: The tools the agent has available to use.\n",
 | |
|     "- The agent class itself: this decides which action to take.\n",
 | |
|     "        \n",
 | |
|     "        \n",
 | |
|     "In this notebook we walk through how to create a custom agent that predicts/takes multiple steps at a time."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "9af9734e",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.agents import AgentExecutor, BaseMultiActionAgent, Tool\n",
 | |
|     "from langchain_community.utilities import SerpAPIWrapper"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "id": "d7c4ebdc",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "def random_word(query: str) -> str:\n",
 | |
|     "    print(\"\\nNow I'm doing this!\")\n",
 | |
|     "    return \"foo\""
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "becda2a1",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "search = SerpAPIWrapper()\n",
 | |
|     "tools = [\n",
 | |
|     "    Tool(\n",
 | |
|     "        name=\"Search\",\n",
 | |
|     "        func=search.run,\n",
 | |
|     "        description=\"useful for when you need to answer questions about current events\",\n",
 | |
|     "    ),\n",
 | |
|     "    Tool(\n",
 | |
|     "        name=\"RandomWord\",\n",
 | |
|     "        func=random_word,\n",
 | |
|     "        description=\"call this to get a random word.\",\n",
 | |
|     "    ),\n",
 | |
|     "]"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "id": "a33e2f7e",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from typing import Any, List, Tuple, Union\n",
 | |
|     "\n",
 | |
|     "from langchain_core.agents import AgentAction, AgentFinish\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "class FakeAgent(BaseMultiActionAgent):\n",
 | |
|     "    \"\"\"Fake Custom Agent.\"\"\"\n",
 | |
|     "\n",
 | |
|     "    @property\n",
 | |
|     "    def input_keys(self):\n",
 | |
|     "        return [\"input\"]\n",
 | |
|     "\n",
 | |
|     "    def plan(\n",
 | |
|     "        self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
 | |
|     "    ) -> Union[List[AgentAction], AgentFinish]:\n",
 | |
|     "        \"\"\"Given input, decided what to do.\n",
 | |
|     "\n",
 | |
|     "        Args:\n",
 | |
|     "            intermediate_steps: Steps the LLM has taken to date,\n",
 | |
|     "                along with observations\n",
 | |
|     "            **kwargs: User inputs.\n",
 | |
|     "\n",
 | |
|     "        Returns:\n",
 | |
|     "            Action specifying what tool to use.\n",
 | |
|     "        \"\"\"\n",
 | |
|     "        if len(intermediate_steps) == 0:\n",
 | |
|     "            return [\n",
 | |
|     "                AgentAction(tool=\"Search\", tool_input=kwargs[\"input\"], log=\"\"),\n",
 | |
|     "                AgentAction(tool=\"RandomWord\", tool_input=kwargs[\"input\"], log=\"\"),\n",
 | |
|     "            ]\n",
 | |
|     "        else:\n",
 | |
|     "            return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")\n",
 | |
|     "\n",
 | |
|     "    async def aplan(\n",
 | |
|     "        self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
 | |
|     "    ) -> Union[List[AgentAction], AgentFinish]:\n",
 | |
|     "        \"\"\"Given input, decided what to do.\n",
 | |
|     "\n",
 | |
|     "        Args:\n",
 | |
|     "            intermediate_steps: Steps the LLM has taken to date,\n",
 | |
|     "                along with observations\n",
 | |
|     "            **kwargs: User inputs.\n",
 | |
|     "\n",
 | |
|     "        Returns:\n",
 | |
|     "            Action specifying what tool to use.\n",
 | |
|     "        \"\"\"\n",
 | |
|     "        if len(intermediate_steps) == 0:\n",
 | |
|     "            return [\n",
 | |
|     "                AgentAction(tool=\"Search\", tool_input=kwargs[\"input\"], log=\"\"),\n",
 | |
|     "                AgentAction(tool=\"RandomWord\", tool_input=kwargs[\"input\"], log=\"\"),\n",
 | |
|     "            ]\n",
 | |
|     "        else:\n",
 | |
|     "            return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 5,
 | |
|    "id": "655d72f6",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "agent = FakeAgent()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 6,
 | |
|    "id": "490604e9",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "agent_executor = AgentExecutor.from_agent_and_tools(\n",
 | |
|     "    agent=agent, tools=tools, verbose=True\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 7,
 | |
|    "id": "653b1617",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\n",
 | |
|       "\n",
 | |
|       "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
 | |
|       "\u001b[32;1m\u001b[1;3m\u001b[0m\u001b[36;1m\u001b[1;3mThe current population of Canada is 38,669,152 as of Monday, April 24, 2023, based on Worldometer elaboration of the latest United Nations data.\u001b[0m\u001b[32;1m\u001b[1;3m\u001b[0m\n",
 | |
|       "Now I'm doing this!\n",
 | |
|       "\u001b[33;1m\u001b[1;3mfoo\u001b[0m\u001b[32;1m\u001b[1;3m\u001b[0m\n",
 | |
|       "\n",
 | |
|       "\u001b[1m> Finished chain.\u001b[0m\n"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "'bar'"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 7,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "agent_executor.run(\"How many people live in canada as of 2023?\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "adefb4c2",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.11.3"
 | |
|   },
 | |
|   "vscode": {
 | |
|    "interpreter": {
 | |
|     "hash": "18784188d7ecd866c0586ac068b02361a6896dc3a29b64f5cc957f09c590acef"
 | |
|    }
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |