Files
langchain/libs/core
James 4fbeffcfee feat(core): add 'approximate' alias in place of count_tokens_approximately (#33045)
### Description: 
earlier we have to use like below:
```python
from langchain_core.messages import trim_messages
from langchain_core.messages.utils import count_tokens_approximately

trim_messages(..., token_counter=count_tokens_approximately)
```
Now can be used as like this also
```python
from langchain_core.messages import trim_messages

trim_messages(..., token_counter="approximate")
```
- [x] **Added tests**
- [x] **Lint and test**: Run this as I made change in langchain/core, uv
run --group test pytest tests/unit_tests/messages/test_utils.py -v
<img width="1006" height="66" alt="image"
src="https://github.com/user-attachments/assets/c6938c29-a781-4e7f-871b-8e888ee764b7"
/>

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-12-19 19:25:29 -06:00
..
2025-05-15 15:43:57 -04:00
2025-12-19 13:05:17 -06:00
2025-12-19 13:05:17 -06:00

🦜🍎 LangChain Core

PyPI - Version PyPI - License PyPI - Downloads Twitter

Looking for the JS/TS version? Check out LangChain.js.

To help you ship LangChain apps to production faster, check out LangSmith. LangSmith is a unified developer platform for building, testing, and monitoring LLM applications.

Quick Install

pip install langchain-core

🤔 What is this?

LangChain Core contains the base abstractions that power the LangChain ecosystem.

These abstractions are designed to be as modular and simple as possible.

The benefit of having these abstractions is that any provider can implement the required interface and then easily be used in the rest of the LangChain ecosystem.

⛰️ Why build on top of LangChain Core?

The LangChain ecosystem is built on top of langchain-core. Some of the benefits:

  • Modularity: We've designed Core around abstractions that are independent of each other, and not tied to any specific model provider.
  • Stability: We are committed to a stable versioning scheme, and will communicate any breaking changes with advance notice and version bumps.
  • Battle-tested: Core components have the largest install base in the LLM ecosystem, and are used in production by many companies.

📖 Documentation

For full documentation, see the API reference. For conceptual guides, tutorials, and examples on using LangChain, see the LangChain Docs.

📕 Releases & Versioning

See our Releases and Versioning policies.

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

For detailed information on how to contribute, see the Contributing Guide.