mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-04 02:03:32 +00:00 
			
		
		
		
	Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
		
			
				
	
	
		
			151 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from unittest.mock import MagicMock
 | 
						|
from uuid import uuid4
 | 
						|
 | 
						|
import pytest
 | 
						|
from langchain_core.outputs import LLMResult
 | 
						|
 | 
						|
from langchain_community.callbacks import OpenAICallbackHandler
 | 
						|
from langchain_community.llms.openai import BaseOpenAI
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def handler() -> OpenAICallbackHandler:
 | 
						|
    return OpenAICallbackHandler()
 | 
						|
 | 
						|
 | 
						|
def test_on_llm_end(handler: OpenAICallbackHandler) -> None:
 | 
						|
    response = LLMResult(
 | 
						|
        generations=[],
 | 
						|
        llm_output={
 | 
						|
            "token_usage": {
 | 
						|
                "prompt_tokens": 2,
 | 
						|
                "completion_tokens": 1,
 | 
						|
                "total_tokens": 3,
 | 
						|
            },
 | 
						|
            "model_name": BaseOpenAI.__fields__["model_name"].default,
 | 
						|
        },
 | 
						|
    )
 | 
						|
    handler.on_llm_end(response)
 | 
						|
    assert handler.successful_requests == 1
 | 
						|
    assert handler.total_tokens == 3
 | 
						|
    assert handler.prompt_tokens == 2
 | 
						|
    assert handler.completion_tokens == 1
 | 
						|
    assert handler.total_cost > 0
 | 
						|
 | 
						|
 | 
						|
def test_on_llm_end_custom_model(handler: OpenAICallbackHandler) -> None:
 | 
						|
    response = LLMResult(
 | 
						|
        generations=[],
 | 
						|
        llm_output={
 | 
						|
            "token_usage": {
 | 
						|
                "prompt_tokens": 2,
 | 
						|
                "completion_tokens": 1,
 | 
						|
                "total_tokens": 3,
 | 
						|
            },
 | 
						|
            "model_name": "foo-bar",
 | 
						|
        },
 | 
						|
    )
 | 
						|
    handler.on_llm_end(response)
 | 
						|
    assert handler.total_cost == 0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "model_name, expected_cost",
 | 
						|
    [
 | 
						|
        ("ada:ft-your-org:custom-model-name-2022-02-15-04-21-04", 0.0032),
 | 
						|
        ("babbage:ft-your-org:custom-model-name-2022-02-15-04-21-04", 0.0048),
 | 
						|
        ("curie:ft-your-org:custom-model-name-2022-02-15-04-21-04", 0.024),
 | 
						|
        ("davinci:ft-your-org:custom-model-name-2022-02-15-04-21-04", 0.24),
 | 
						|
        ("ft:babbage-002:your-org:custom-model-name:1abcdefg", 0.0032),
 | 
						|
        ("ft:davinci-002:your-org:custom-model-name:1abcdefg", 0.024),
 | 
						|
        ("ft:gpt-3.5-turbo-0613:your-org:custom-model-name:1abcdefg", 0.028),
 | 
						|
        ("babbage-002.ft-0123456789abcdefghijklmnopqrstuv", 0.0008),
 | 
						|
        ("davinci-002.ft-0123456789abcdefghijklmnopqrstuv", 0.004),
 | 
						|
        ("gpt-35-turbo-0613.ft-0123456789abcdefghijklmnopqrstuv", 0.0035),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_on_llm_end_finetuned_model(
 | 
						|
    handler: OpenAICallbackHandler, model_name: str, expected_cost: float
 | 
						|
) -> None:
 | 
						|
    response = LLMResult(
 | 
						|
        generations=[],
 | 
						|
        llm_output={
 | 
						|
            "token_usage": {
 | 
						|
                "prompt_tokens": 1000,
 | 
						|
                "completion_tokens": 1000,
 | 
						|
                "total_tokens": 2000,
 | 
						|
            },
 | 
						|
            "model_name": model_name,
 | 
						|
        },
 | 
						|
    )
 | 
						|
    handler.on_llm_end(response)
 | 
						|
    assert handler.total_cost == expected_cost
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "model_name,expected_cost",
 | 
						|
    [
 | 
						|
        ("gpt-35-turbo", 0.0035),
 | 
						|
        ("gpt-35-turbo-0301", 0.0035),
 | 
						|
        (
 | 
						|
            "gpt-35-turbo-0613",
 | 
						|
            0.0035,
 | 
						|
        ),
 | 
						|
        (
 | 
						|
            "gpt-35-turbo-16k-0613",
 | 
						|
            0.007,
 | 
						|
        ),
 | 
						|
        (
 | 
						|
            "gpt-35-turbo-16k",
 | 
						|
            0.007,
 | 
						|
        ),
 | 
						|
        ("gpt-4", 0.09),
 | 
						|
        ("gpt-4-0314", 0.09),
 | 
						|
        ("gpt-4-0613", 0.09),
 | 
						|
        ("gpt-4-32k", 0.18),
 | 
						|
        ("gpt-4-32k-0314", 0.18),
 | 
						|
        ("gpt-4-32k-0613", 0.18),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_on_llm_end_azure_openai(
 | 
						|
    handler: OpenAICallbackHandler, model_name: str, expected_cost: float
 | 
						|
) -> None:
 | 
						|
    response = LLMResult(
 | 
						|
        generations=[],
 | 
						|
        llm_output={
 | 
						|
            "token_usage": {
 | 
						|
                "prompt_tokens": 1000,
 | 
						|
                "completion_tokens": 1000,
 | 
						|
                "total_tokens": 2000,
 | 
						|
            },
 | 
						|
            "model_name": model_name,
 | 
						|
        },
 | 
						|
    )
 | 
						|
    handler.on_llm_end(response)
 | 
						|
    assert handler.total_cost == expected_cost
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "model_name", ["gpt-35-turbo-16k-0301", "gpt-4-0301", "gpt-4-32k-0301"]
 | 
						|
)
 | 
						|
def test_on_llm_end_no_cost_invalid_model(
 | 
						|
    handler: OpenAICallbackHandler, model_name: str
 | 
						|
) -> None:
 | 
						|
    response = LLMResult(
 | 
						|
        generations=[],
 | 
						|
        llm_output={
 | 
						|
            "token_usage": {
 | 
						|
                "prompt_tokens": 1000,
 | 
						|
                "completion_tokens": 1000,
 | 
						|
                "total_tokens": 2000,
 | 
						|
            },
 | 
						|
            "model_name": model_name,
 | 
						|
        },
 | 
						|
    )
 | 
						|
    handler.on_llm_end(response)
 | 
						|
    assert handler.total_cost == 0
 | 
						|
 | 
						|
 | 
						|
def test_on_retry_works(handler: OpenAICallbackHandler) -> None:
 | 
						|
    handler.on_retry(MagicMock(), run_id=uuid4())
 |