mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-30 23:29:54 +00:00 
			
		
		
		
	Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
		
			
				
	
	
		
			124 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			124 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Test openai embeddings."""
 | |
| import os
 | |
| from typing import Any
 | |
| 
 | |
| import numpy as np
 | |
| import pytest
 | |
| 
 | |
| from langchain_community.embeddings import AzureOpenAIEmbeddings
 | |
| 
 | |
| OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "")
 | |
| OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "")
 | |
| OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "")
 | |
| DEPLOYMENT_NAME = os.environ.get(
 | |
|     "AZURE_OPENAI_DEPLOYMENT_NAME",
 | |
|     os.environ.get("AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME", ""),
 | |
| )
 | |
| 
 | |
| 
 | |
| def _get_embeddings(**kwargs: Any) -> AzureOpenAIEmbeddings:
 | |
|     return AzureOpenAIEmbeddings(
 | |
|         azure_deployment=DEPLOYMENT_NAME,
 | |
|         api_version=OPENAI_API_VERSION,
 | |
|         openai_api_base=OPENAI_API_BASE,
 | |
|         openai_api_key=OPENAI_API_KEY,
 | |
|         **kwargs,
 | |
|     )
 | |
| 
 | |
| 
 | |
| @pytest.mark.scheduled
 | |
| def test_azure_openai_embedding_documents() -> None:
 | |
|     """Test openai embeddings."""
 | |
|     documents = ["foo bar"]
 | |
|     embedding = _get_embeddings()
 | |
|     output = embedding.embed_documents(documents)
 | |
|     assert len(output) == 1
 | |
|     assert len(output[0]) == 1536
 | |
| 
 | |
| 
 | |
| @pytest.mark.scheduled
 | |
| def test_azure_openai_embedding_documents_multiple() -> None:
 | |
|     """Test openai embeddings."""
 | |
|     documents = ["foo bar", "bar foo", "foo"]
 | |
|     embedding = _get_embeddings(chunk_size=2)
 | |
|     embedding.embedding_ctx_length = 8191
 | |
|     output = embedding.embed_documents(documents)
 | |
|     assert embedding.chunk_size == 2
 | |
|     assert len(output) == 3
 | |
|     assert len(output[0]) == 1536
 | |
|     assert len(output[1]) == 1536
 | |
|     assert len(output[2]) == 1536
 | |
| 
 | |
| 
 | |
| @pytest.mark.scheduled
 | |
| def test_azure_openai_embedding_documents_chunk_size() -> None:
 | |
|     """Test openai embeddings."""
 | |
|     documents = ["foo bar"] * 20
 | |
|     embedding = _get_embeddings()
 | |
|     embedding.embedding_ctx_length = 8191
 | |
|     output = embedding.embed_documents(documents)
 | |
|     # Max 16 chunks per batch on Azure OpenAI embeddings
 | |
|     assert embedding.chunk_size == 16
 | |
|     assert len(output) == 20
 | |
|     assert all([len(out) == 1536 for out in output])
 | |
| 
 | |
| 
 | |
| @pytest.mark.scheduled
 | |
| async def test_azure_openai_embedding_documents_async_multiple() -> None:
 | |
|     """Test openai embeddings."""
 | |
|     documents = ["foo bar", "bar foo", "foo"]
 | |
|     embedding = _get_embeddings(chunk_size=2)
 | |
|     embedding.embedding_ctx_length = 8191
 | |
|     output = await embedding.aembed_documents(documents)
 | |
|     assert len(output) == 3
 | |
|     assert len(output[0]) == 1536
 | |
|     assert len(output[1]) == 1536
 | |
|     assert len(output[2]) == 1536
 | |
| 
 | |
| 
 | |
| @pytest.mark.scheduled
 | |
| def test_azure_openai_embedding_query() -> None:
 | |
|     """Test openai embeddings."""
 | |
|     document = "foo bar"
 | |
|     embedding = _get_embeddings()
 | |
|     output = embedding.embed_query(document)
 | |
|     assert len(output) == 1536
 | |
| 
 | |
| 
 | |
| @pytest.mark.scheduled
 | |
| async def test_azure_openai_embedding_async_query() -> None:
 | |
|     """Test openai embeddings."""
 | |
|     document = "foo bar"
 | |
|     embedding = _get_embeddings()
 | |
|     output = await embedding.aembed_query(document)
 | |
|     assert len(output) == 1536
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(reason="Unblock scheduled testing. TODO: fix.")
 | |
| def test_azure_openai_embedding_with_empty_string() -> None:
 | |
|     """Test openai embeddings with empty string."""
 | |
|     import openai
 | |
| 
 | |
|     document = ["", "abc"]
 | |
|     embedding = _get_embeddings()
 | |
|     output = embedding.embed_documents(document)
 | |
|     assert len(output) == 2
 | |
|     assert len(output[0]) == 1536
 | |
|     expected_output = openai.Embedding.create(input="", model="text-embedding-ada-002")[
 | |
|         "data"
 | |
|     ][0]["embedding"]
 | |
|     assert np.allclose(output[0], expected_output)
 | |
|     assert len(output[1]) == 1536
 | |
| 
 | |
| 
 | |
| @pytest.mark.scheduled
 | |
| def test_embed_documents_normalized() -> None:
 | |
|     output = _get_embeddings().embed_documents(["foo walked to the market"])
 | |
|     assert np.isclose(np.linalg.norm(output[0]), 1.0)
 | |
| 
 | |
| 
 | |
| @pytest.mark.scheduled
 | |
| def test_embed_query_normalized() -> None:
 | |
|     output = _get_embeddings().embed_query("foo walked to the market")
 | |
|     assert np.isclose(np.linalg.norm(output), 1.0)
 |