mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-30 23:29:54 +00:00 
			
		
		
		
	Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
		
			
				
	
	
		
			28 lines
		
	
	
		
			883 B
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			28 lines
		
	
	
		
			883 B
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Test Bookend AI embeddings."""
 | |
| from langchain_community.embeddings.bookend import BookendEmbeddings
 | |
| 
 | |
| 
 | |
| def test_bookend_embedding_documents() -> None:
 | |
|     """Test Bookend AI embeddings for documents."""
 | |
|     documents = ["foo bar", "bar foo"]
 | |
|     embedding = BookendEmbeddings(
 | |
|         domain="<bookend_domain>",
 | |
|         api_token="<bookend_api_token>",
 | |
|         model_id="<bookend_embeddings_model_id>",
 | |
|     )
 | |
|     output = embedding.embed_documents(documents)
 | |
|     assert len(output) == 2
 | |
|     assert len(output[0]) == 768
 | |
| 
 | |
| 
 | |
| def test_bookend_embedding_query() -> None:
 | |
|     """Test Bookend AI embeddings for query."""
 | |
|     document = "foo bar"
 | |
|     embedding = BookendEmbeddings(
 | |
|         domain="<bookend_domain>",
 | |
|         api_token="<bookend_api_token>",
 | |
|         model_id="<bookend_embeddings_model_id>",
 | |
|     )
 | |
|     output = embedding.embed_query(document)
 | |
|     assert len(output) == 768
 |