mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 07:41:40 +00:00 
			
		
		
		
	Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
		
			
				
	
	
		
			59 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			59 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Test embaas embeddings."""
 | |
| import responses
 | |
| 
 | |
| from langchain_community.embeddings.embaas import EMBAAS_API_URL, EmbaasEmbeddings
 | |
| 
 | |
| 
 | |
| def test_embaas_embed_documents() -> None:
 | |
|     """Test embaas embeddings with multiple texts."""
 | |
|     texts = ["foo bar", "bar foo", "foo"]
 | |
|     embedding = EmbaasEmbeddings()
 | |
|     output = embedding.embed_documents(texts)
 | |
|     assert len(output) == 3
 | |
|     assert len(output[0]) == 1024
 | |
|     assert len(output[1]) == 1024
 | |
|     assert len(output[2]) == 1024
 | |
| 
 | |
| 
 | |
| def test_embaas_embed_query() -> None:
 | |
|     """Test embaas embeddings with multiple texts."""
 | |
|     text = "foo"
 | |
|     embeddings = EmbaasEmbeddings()
 | |
|     output = embeddings.embed_query(text)
 | |
|     assert len(output) == 1024
 | |
| 
 | |
| 
 | |
| def test_embaas_embed_query_instruction() -> None:
 | |
|     """Test embaas embeddings with a different instruction."""
 | |
|     text = "Test"
 | |
|     instruction = "query"
 | |
|     embeddings = EmbaasEmbeddings(instruction=instruction)
 | |
|     output = embeddings.embed_query(text)
 | |
|     assert len(output) == 1024
 | |
| 
 | |
| 
 | |
| def test_embaas_embed_query_model() -> None:
 | |
|     """Test embaas embeddings with a different model."""
 | |
|     text = "Test"
 | |
|     model = "instructor-large"
 | |
|     instruction = "Represent the query for retrieval"
 | |
|     embeddings = EmbaasEmbeddings(model=model, instruction=instruction)
 | |
|     output = embeddings.embed_query(text)
 | |
|     assert len(output) == 768
 | |
| 
 | |
| 
 | |
| @responses.activate
 | |
| def test_embaas_embed_documents_response() -> None:
 | |
|     """Test embaas embeddings with multiple texts."""
 | |
|     responses.add(
 | |
|         responses.POST,
 | |
|         EMBAAS_API_URL,
 | |
|         json={"data": [{"embedding": [0.0] * 1024}]},
 | |
|         status=200,
 | |
|     )
 | |
| 
 | |
|     text = "asd"
 | |
|     embeddings = EmbaasEmbeddings()
 | |
|     output = embeddings.embed_query(text)
 | |
|     assert len(output) == 1024
 |