mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 07:41:40 +00:00 
			
		
		
		
	Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
		
			
				
	
	
		
			58 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			58 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Test huggingface embeddings."""
 | |
| 
 | |
| from langchain_community.embeddings.huggingface import (
 | |
|     HuggingFaceEmbeddings,
 | |
|     HuggingFaceInstructEmbeddings,
 | |
| )
 | |
| 
 | |
| 
 | |
| def test_huggingface_embedding_documents() -> None:
 | |
|     """Test huggingface embeddings."""
 | |
|     documents = ["foo bar"]
 | |
|     embedding = HuggingFaceEmbeddings()
 | |
|     output = embedding.embed_documents(documents)
 | |
|     assert len(output) == 1
 | |
|     assert len(output[0]) == 768
 | |
| 
 | |
| 
 | |
| def test_huggingface_embedding_query() -> None:
 | |
|     """Test huggingface embeddings."""
 | |
|     document = "foo bar"
 | |
|     embedding = HuggingFaceEmbeddings(encode_kwargs={"batch_size": 16})
 | |
|     output = embedding.embed_query(document)
 | |
|     assert len(output) == 768
 | |
| 
 | |
| 
 | |
| def test_huggingface_instructor_embedding_documents() -> None:
 | |
|     """Test huggingface embeddings."""
 | |
|     documents = ["foo bar"]
 | |
|     model_name = "hkunlp/instructor-base"
 | |
|     embedding = HuggingFaceInstructEmbeddings(model_name=model_name)
 | |
|     output = embedding.embed_documents(documents)
 | |
|     assert len(output) == 1
 | |
|     assert len(output[0]) == 768
 | |
| 
 | |
| 
 | |
| def test_huggingface_instructor_embedding_query() -> None:
 | |
|     """Test huggingface embeddings."""
 | |
|     query = "foo bar"
 | |
|     model_name = "hkunlp/instructor-base"
 | |
|     embedding = HuggingFaceInstructEmbeddings(model_name=model_name)
 | |
|     output = embedding.embed_query(query)
 | |
|     assert len(output) == 768
 | |
| 
 | |
| 
 | |
| def test_huggingface_instructor_embedding_normalize() -> None:
 | |
|     """Test huggingface embeddings."""
 | |
|     query = "foo bar"
 | |
|     model_name = "hkunlp/instructor-base"
 | |
|     encode_kwargs = {"normalize_embeddings": True}
 | |
|     embedding = HuggingFaceInstructEmbeddings(
 | |
|         model_name=model_name, encode_kwargs=encode_kwargs
 | |
|     )
 | |
|     output = embedding.embed_query(query)
 | |
|     assert len(output) == 768
 | |
|     eps = 1e-5
 | |
|     norm = sum([o**2 for o in output])
 | |
|     assert abs(1 - norm) <= eps
 |