mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 16:08:59 +00:00 
			
		
		
		
	Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
		
			
				
	
	
		
			97 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			97 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Test self-hosted embeddings."""
 | |
| from typing import Any
 | |
| 
 | |
| from langchain_community.embeddings import (
 | |
|     SelfHostedEmbeddings,
 | |
|     SelfHostedHuggingFaceEmbeddings,
 | |
|     SelfHostedHuggingFaceInstructEmbeddings,
 | |
| )
 | |
| 
 | |
| 
 | |
| def get_remote_instance() -> Any:
 | |
|     """Get remote instance for testing."""
 | |
|     import runhouse as rh
 | |
| 
 | |
|     gpu = rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False)
 | |
|     gpu.install_packages(["pip:./"])
 | |
|     return gpu
 | |
| 
 | |
| 
 | |
| def test_self_hosted_huggingface_embedding_documents() -> None:
 | |
|     """Test self-hosted huggingface embeddings."""
 | |
|     documents = ["foo bar"]
 | |
|     gpu = get_remote_instance()
 | |
|     embedding = SelfHostedHuggingFaceEmbeddings(hardware=gpu)
 | |
|     output = embedding.embed_documents(documents)
 | |
|     assert len(output) == 1
 | |
|     assert len(output[0]) == 768
 | |
| 
 | |
| 
 | |
| def test_self_hosted_huggingface_embedding_query() -> None:
 | |
|     """Test self-hosted huggingface embeddings."""
 | |
|     document = "foo bar"
 | |
|     gpu = get_remote_instance()
 | |
|     embedding = SelfHostedHuggingFaceEmbeddings(hardware=gpu)
 | |
|     output = embedding.embed_query(document)
 | |
|     assert len(output) == 768
 | |
| 
 | |
| 
 | |
| def test_self_hosted_huggingface_instructor_embedding_documents() -> None:
 | |
|     """Test self-hosted huggingface instruct embeddings."""
 | |
|     documents = ["foo bar"]
 | |
|     gpu = get_remote_instance()
 | |
|     embedding = SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu)
 | |
|     output = embedding.embed_documents(documents)
 | |
|     assert len(output) == 1
 | |
|     assert len(output[0]) == 768
 | |
| 
 | |
| 
 | |
| def test_self_hosted_huggingface_instructor_embedding_query() -> None:
 | |
|     """Test self-hosted huggingface instruct embeddings."""
 | |
|     query = "foo bar"
 | |
|     gpu = get_remote_instance()
 | |
|     embedding = SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu)
 | |
|     output = embedding.embed_query(query)
 | |
|     assert len(output) == 768
 | |
| 
 | |
| 
 | |
| def get_pipeline() -> Any:
 | |
|     """Get pipeline for testing."""
 | |
|     from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 | |
| 
 | |
|     model_id = "facebook/bart-base"
 | |
|     tokenizer = AutoTokenizer.from_pretrained(model_id)
 | |
|     model = AutoModelForCausalLM.from_pretrained(model_id)
 | |
|     return pipeline("feature-extraction", model=model, tokenizer=tokenizer)
 | |
| 
 | |
| 
 | |
| def inference_fn(pipeline: Any, prompt: str) -> Any:
 | |
|     """Inference function for testing."""
 | |
|     # Return last hidden state of the model
 | |
|     if isinstance(prompt, list):
 | |
|         return [emb[0][-1] for emb in pipeline(prompt)]
 | |
|     return pipeline(prompt)[0][-1]
 | |
| 
 | |
| 
 | |
| def test_self_hosted_embedding_documents() -> None:
 | |
|     """Test self-hosted huggingface instruct embeddings."""
 | |
|     documents = ["foo bar"] * 2
 | |
|     gpu = get_remote_instance()
 | |
|     embedding = SelfHostedEmbeddings(
 | |
|         model_load_fn=get_pipeline, hardware=gpu, inference_fn=inference_fn
 | |
|     )
 | |
|     output = embedding.embed_documents(documents)
 | |
|     assert len(output) == 2
 | |
|     assert len(output[0]) == 50265
 | |
| 
 | |
| 
 | |
| def test_self_hosted_embedding_query() -> None:
 | |
|     """Test self-hosted custom embeddings."""
 | |
|     query = "foo bar"
 | |
|     gpu = get_remote_instance()
 | |
|     embedding = SelfHostedEmbeddings(
 | |
|         model_load_fn=get_pipeline, hardware=gpu, inference_fn=inference_fn
 | |
|     )
 | |
|     output = embedding.embed_query(query)
 | |
|     assert len(output) == 50265
 |