mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 16:08:59 +00:00 
			
		
		
		
	Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
		
			
				
	
	
		
			79 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Test math utility functions."""
 | |
| from typing import List
 | |
| 
 | |
| import numpy as np
 | |
| import pytest
 | |
| 
 | |
| from langchain_community.utils.math import cosine_similarity, cosine_similarity_top_k
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def X() -> List[List[float]]:
 | |
|     return [[1.0, 2.0, 3.0], [0.0, 1.0, 0.0], [1.0, 2.0, 0.0]]
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def Y() -> List[List[float]]:
 | |
|     return [[0.5, 1.0, 1.5], [1.0, 0.0, 0.0], [2.0, 5.0, 2.0], [0.0, 0.0, 0.0]]
 | |
| 
 | |
| 
 | |
| def test_cosine_similarity_zero() -> None:
 | |
|     X = np.zeros((3, 3))
 | |
|     Y = np.random.random((3, 3))
 | |
|     expected = np.zeros((3, 3))
 | |
|     actual = cosine_similarity(X, Y)
 | |
|     assert np.allclose(expected, actual)
 | |
| 
 | |
| 
 | |
| def test_cosine_similarity_identity() -> None:
 | |
|     X = np.random.random((4, 4))
 | |
|     expected = np.ones(4)
 | |
|     actual = np.diag(cosine_similarity(X, X))
 | |
|     assert np.allclose(expected, actual)
 | |
| 
 | |
| 
 | |
| def test_cosine_similarity_empty() -> None:
 | |
|     empty_list: List[List[float]] = []
 | |
|     assert len(cosine_similarity(empty_list, empty_list)) == 0
 | |
|     assert len(cosine_similarity(empty_list, np.random.random((3, 3)))) == 0
 | |
| 
 | |
| 
 | |
| def test_cosine_similarity(X: List[List[float]], Y: List[List[float]]) -> None:
 | |
|     expected = [
 | |
|         [1.0, 0.26726124, 0.83743579, 0.0],
 | |
|         [0.53452248, 0.0, 0.87038828, 0.0],
 | |
|         [0.5976143, 0.4472136, 0.93419873, 0.0],
 | |
|     ]
 | |
|     actual = cosine_similarity(X, Y)
 | |
|     assert np.allclose(expected, actual)
 | |
| 
 | |
| 
 | |
| def test_cosine_similarity_top_k(X: List[List[float]], Y: List[List[float]]) -> None:
 | |
|     expected_idxs = [(0, 0), (2, 2), (1, 2), (0, 2), (2, 0)]
 | |
|     expected_scores = [1.0, 0.93419873, 0.87038828, 0.83743579, 0.5976143]
 | |
|     actual_idxs, actual_scores = cosine_similarity_top_k(X, Y)
 | |
|     assert actual_idxs == expected_idxs
 | |
|     assert np.allclose(expected_scores, actual_scores)
 | |
| 
 | |
| 
 | |
| def test_cosine_similarity_score_threshold(
 | |
|     X: List[List[float]], Y: List[List[float]]
 | |
| ) -> None:
 | |
|     expected_idxs = [(0, 0), (2, 2)]
 | |
|     expected_scores = [1.0, 0.93419873]
 | |
|     actual_idxs, actual_scores = cosine_similarity_top_k(
 | |
|         X, Y, top_k=None, score_threshold=0.9
 | |
|     )
 | |
|     assert actual_idxs == expected_idxs
 | |
|     assert np.allclose(expected_scores, actual_scores)
 | |
| 
 | |
| 
 | |
| def test_cosine_similarity_top_k_and_score_threshold(
 | |
|     X: List[List[float]], Y: List[List[float]]
 | |
| ) -> None:
 | |
|     expected_idxs = [(0, 0), (2, 2), (1, 2), (0, 2)]
 | |
|     expected_scores = [1.0, 0.93419873, 0.87038828, 0.83743579]
 | |
|     actual_idxs, actual_scores = cosine_similarity_top_k(X, Y, score_threshold=0.8)
 | |
|     assert actual_idxs == expected_idxs
 | |
|     assert np.allclose(expected_scores, actual_scores)
 |