langchain/docs/docs/integrations/text_embedding/cloudflare_workersai.ipynb
Bagatur 480626dc99
docs, community[patch], experimental[patch], langchain[patch], cli[pa… (#15412)
…tch]: import models from community

ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
2024-01-02 15:32:16 -05:00

142 lines
3.5 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "59428e05",
"metadata": {},
"source": [
"# Cloudflare Workers AI\n",
"\n",
">[Cloudflare, Inc. (Wikipedia)](https://en.wikipedia.org/wiki/Cloudflare) is an American company that provides content delivery network services, cloud cybersecurity, DDoS mitigation, and ICANN-accredited domain registration services.\n",
"\n",
">[Cloudflare Workers AI](https://developers.cloudflare.com/workers-ai/) allows you to run machine learning models, on the `Cloudflare` network, from your code via REST API.\n",
"\n",
">[Cloudflare AI document](https://developers.cloudflare.com/workers-ai/models/text-embeddings/) listed all text embeddings models available.\n",
"\n",
"## Setting up\n",
"\n",
"Both Cloudflare account ID and API token are required. Find how to obtain them from [this document](https://developers.cloudflare.com/workers-ai/get-started/rest-api/).\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f60023b8",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"\n",
"my_account_id = getpass.getpass(\"Enter your Cloudflare account ID:\\n\\n\")\n",
"my_api_token = getpass.getpass(\"Enter your Cloudflare API token:\\n\\n\")"
]
},
{
"cell_type": "markdown",
"id": "1c94b531-f5a6-4eea-9f08-a85e9d3bff28",
"metadata": {},
"source": [
"## Example"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "92c5b61e",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings.cloudflare_workersai import (\n",
" CloudflareWorkersAIEmbeddings,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "062547b9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(384, [-0.033627357333898544, 0.03982774540781975, 0.03559349477291107])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"embeddings = CloudflareWorkersAIEmbeddings(\n",
" account_id=my_account_id,\n",
" api_token=my_api_token,\n",
" model_name=\"@cf/baai/bge-small-en-v1.5\",\n",
")\n",
"# single string embeddings\n",
"query_result = embeddings.embed_query(\"test\")\n",
"len(query_result), query_result[:3]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e1dcc4bd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(3, 384)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# string embeddings in batches\n",
"batch_query_result = embeddings.embed_documents([\"test1\", \"test2\", \"test3\"])\n",
"len(batch_query_result), len(batch_query_result[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "52de8b88",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"vscode": {
"interpreter": {
"hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}