langchain/docs/docs/integrations/tools/memorize.ipynb
Bagatur 480626dc99
docs, community[patch], experimental[patch], langchain[patch], cli[pa… (#15412)
…tch]: import models from community

ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
2024-01-02 15:32:16 -05:00

205 lines
5.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Memorize\n",
"\n",
"Fine-tuning LLM itself to memorize information using unsupervised learning.\n",
"\n",
"This tool requires LLMs that support fine-tuning. Currently, only `langchain.llms import GradientLLM` is supported."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"from langchain.agents import AgentExecutor, AgentType, initialize_agent, load_tools\n",
"from langchain.chains import LLMChain\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain_community.llms import GradientLLM"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set the Environment API Key\n",
"Make sure to get your API key from Gradient AI. You are given $10 in free credits to test and fine-tune different models."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"from getpass import getpass\n",
"\n",
"if not os.environ.get(\"GRADIENT_ACCESS_TOKEN\", None):\n",
" # Access token under https://auth.gradient.ai/select-workspace\n",
" os.environ[\"GRADIENT_ACCESS_TOKEN\"] = getpass(\"gradient.ai access token:\")\n",
"if not os.environ.get(\"GRADIENT_WORKSPACE_ID\", None):\n",
" # `ID` listed in `$ gradient workspace list`\n",
" # also displayed after login at at https://auth.gradient.ai/select-workspace\n",
" os.environ[\"GRADIENT_WORKSPACE_ID\"] = getpass(\"gradient.ai workspace id:\")\n",
"if not os.environ.get(\"GRADIENT_MODEL_ADAPTER_ID\", None):\n",
" # `ID` listed in `$ gradient model list --workspace-id \"$GRADIENT_WORKSPACE_ID\"`\n",
" os.environ[\"GRADIENT_MODEL_ID\"] = getpass(\"gradient.ai model id:\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Optional: Validate your Environment variables ```GRADIENT_ACCESS_TOKEN``` and ```GRADIENT_WORKSPACE_ID``` to get currently deployed models."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create the `GradientLLM` instance\n",
"You can specify different parameters such as the model name, max tokens generated, temperature, etc."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"llm = GradientLLM(\n",
" model_id=os.environ[\"GRADIENT_MODEL_ID\"],\n",
" # # optional: set new credentials, they default to environment variables\n",
" # gradient_workspace_id=os.environ[\"GRADIENT_WORKSPACE_ID\"],\n",
" # gradient_access_token=os.environ[\"GRADIENT_ACCESS_TOKEN\"],\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load tools"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"tools = load_tools([\"memorize\"], llm=llm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initiate the Agent"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"agent = initialize_agent(\n",
" tools,\n",
" llm,\n",
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
" verbose=True,\n",
" # memory=ConversationBufferMemory(memory_key=\"chat_history\", return_messages=True),\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run the agent\n",
"Ask the agent to memorize a piece of text."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mI should memorize this fact.\n",
"Action: Memorize\n",
"Action Input: Zara T\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mTrain complete. Loss: 1.6853971333333335\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mI now know the final answer.\n",
"Final Answer: Zara Tubikova set a world\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Zara Tubikova set a world'"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\n",
" \"Please remember the fact in detail:\\nWith astonishing dexterity, Zara Tubikova set a world record by solving a 4x4 Rubik's Cube variation blindfolded in under 20 seconds, employing only their feet.\"\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
},
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}