mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-30 03:28:40 +00:00
# Add SKLearnVectorStore This PR adds SKLearnVectorStore, a simply vector store based on NearestNeighbors implementations in the scikit-learn package. This provides a simple drop-in vector store implementation with minimal dependencies (scikit-learn is typically installed in a data scientist / ml engineer environment). The vector store can be persisted and loaded from json, bson and parquet format. SKLearnVectorStore has soft (dynamic) dependency on the scikit-learn, numpy and pandas packages. Persisting to bson requires the bson package, persisting to parquet requires the pyarrow package. ## Before submitting Integration tests are provided under `tests/integration_tests/vectorstores/test_sklearn.py` Sample usage notebook is provided under `docs/modules/indexes/vectorstores/examples/sklear.ipynb` Co-authored-by: Dev 2049 <dev.dev2049@gmail.com> |
||
---|---|---|
.. | ||
analyticdb.ipynb | ||
annoy.ipynb | ||
atlas.ipynb | ||
chroma.ipynb | ||
deeplake.ipynb | ||
docarray_hnsw.ipynb | ||
docarray_in_memory.ipynb | ||
elasticsearch.ipynb | ||
faiss.ipynb | ||
lanecdb.ipynb | ||
milvus.ipynb | ||
myscale.ipynb | ||
opensearch.ipynb | ||
pgvector.ipynb | ||
pinecone.ipynb | ||
qdrant.ipynb | ||
redis.ipynb | ||
sklearn.ipynb | ||
supabase.ipynb | ||
tair.ipynb | ||
typesense.ipynb | ||
vectara.ipynb | ||
weaviate.ipynb | ||
zilliz.ipynb |