mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-04 10:10:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			229 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			229 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
{
 | 
						|
 "cells": [
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "82a4c2cc-20ea-4b20-a565-63e905dee8ff",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "# Python Agent\n",
 | 
						|
    "\n",
 | 
						|
    "This notebook showcases an agent designed to write and execute python code to answer a question."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 4,
 | 
						|
   "id": "f98e9c90-5c37-4fb9-af3e-d09693af8543",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "from langchain.agents.agent_toolkits import create_python_agent\n",
 | 
						|
    "from langchain.tools.python.tool import PythonREPLTool\n",
 | 
						|
    "from langchain.python import PythonREPL\n",
 | 
						|
    "from langchain.llms.openai import OpenAI"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 5,
 | 
						|
   "id": "cc422f53-c51c-4694-a834-72ecd1e68363",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "agent_executor = create_python_agent(\n",
 | 
						|
    "    llm=OpenAI(temperature=0, max_tokens=1000),\n",
 | 
						|
    "    tool=PythonREPLTool(),\n",
 | 
						|
    "    verbose=True\n",
 | 
						|
    ")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "c16161de",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "## Fibonacci Example\n",
 | 
						|
    "This example was created by [John Wiseman](https://twitter.com/lemonodor/status/1628270074074398720?s=20)."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 3,
 | 
						|
   "id": "25cd4f92-ea9b-4fe6-9838-a4f85f81eebe",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
 | 
						|
      "\u001b[32;1m\u001b[1;3m I need to calculate the 10th fibonacci number\n",
 | 
						|
      "Action: Python REPL\n",
 | 
						|
      "Action Input: def fibonacci(n):\n",
 | 
						|
      "    if n == 0:\n",
 | 
						|
      "        return 0\n",
 | 
						|
      "    elif n == 1:\n",
 | 
						|
      "        return 1\n",
 | 
						|
      "    else:\n",
 | 
						|
      "        return fibonacci(n-1) + fibonacci(n-2)\u001b[0m\n",
 | 
						|
      "Observation: \u001b[36;1m\u001b[1;3m\u001b[0m\n",
 | 
						|
      "Thought:\u001b[32;1m\u001b[1;3m I need to call the function with 10 as the argument\n",
 | 
						|
      "Action: Python REPL\n",
 | 
						|
      "Action Input: fibonacci(10)\u001b[0m\n",
 | 
						|
      "Observation: \u001b[36;1m\u001b[1;3m\u001b[0m\n",
 | 
						|
      "Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
 | 
						|
      "Final Answer: 55\u001b[0m\n",
 | 
						|
      "\n",
 | 
						|
      "\u001b[1m> Finished chain.\u001b[0m\n"
 | 
						|
     ]
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "text/plain": [
 | 
						|
       "'55'"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "execution_count": 3,
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "execute_result"
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "agent_executor.run(\"What is the 10th fibonacci number?\")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "7caa30de",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "## Training neural net\n",
 | 
						|
    "This example was created by [Samee Ur Rehman](https://twitter.com/sameeurehman/status/1630130518133207046?s=20)."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 4,
 | 
						|
   "id": "4b9f60e7-eb6a-4f14-8604-498d863d4482",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
 | 
						|
      "\u001b[32;1m\u001b[1;3m I need to write a neural network in PyTorch and train it on the given data.\n",
 | 
						|
      "Action: Python REPL\n",
 | 
						|
      "Action Input: \n",
 | 
						|
      "import torch\n",
 | 
						|
      "\n",
 | 
						|
      "# Define the model\n",
 | 
						|
      "model = torch.nn.Sequential(\n",
 | 
						|
      "    torch.nn.Linear(1, 1)\n",
 | 
						|
      ")\n",
 | 
						|
      "\n",
 | 
						|
      "# Define the loss\n",
 | 
						|
      "loss_fn = torch.nn.MSELoss()\n",
 | 
						|
      "\n",
 | 
						|
      "# Define the optimizer\n",
 | 
						|
      "optimizer = torch.optim.SGD(model.parameters(), lr=0.01)\n",
 | 
						|
      "\n",
 | 
						|
      "# Define the data\n",
 | 
						|
      "x_data = torch.tensor([[1.0], [2.0], [3.0], [4.0]])\n",
 | 
						|
      "y_data = torch.tensor([[2.0], [4.0], [6.0], [8.0]])\n",
 | 
						|
      "\n",
 | 
						|
      "# Train the model\n",
 | 
						|
      "for epoch in range(1000):\n",
 | 
						|
      "    # Forward pass\n",
 | 
						|
      "    y_pred = model(x_data)\n",
 | 
						|
      "\n",
 | 
						|
      "    # Compute and print loss\n",
 | 
						|
      "    loss = loss_fn(y_pred, y_data)\n",
 | 
						|
      "    if (epoch+1) % 100 == 0:\n",
 | 
						|
      "        print(f'Epoch {epoch+1}: loss = {loss.item():.4f}')\n",
 | 
						|
      "\n",
 | 
						|
      "    # Zero the gradients\n",
 | 
						|
      "    optimizer.zero_grad()\n",
 | 
						|
      "\n",
 | 
						|
      "    # Backward pass\n",
 | 
						|
      "    loss.backward()\n",
 | 
						|
      "\n",
 | 
						|
      "    # Update the weights\n",
 | 
						|
      "    optimizer.step()\n",
 | 
						|
      "\u001b[0m\n",
 | 
						|
      "Observation: \u001b[36;1m\u001b[1;3mEpoch 100: loss = 0.0013\n",
 | 
						|
      "Epoch 200: loss = 0.0007\n",
 | 
						|
      "Epoch 300: loss = 0.0004\n",
 | 
						|
      "Epoch 400: loss = 0.0002\n",
 | 
						|
      "Epoch 500: loss = 0.0001\n",
 | 
						|
      "Epoch 600: loss = 0.0001\n",
 | 
						|
      "Epoch 700: loss = 0.0000\n",
 | 
						|
      "Epoch 800: loss = 0.0000\n",
 | 
						|
      "Epoch 900: loss = 0.0000\n",
 | 
						|
      "Epoch 1000: loss = 0.0000\n",
 | 
						|
      "\u001b[0m\n",
 | 
						|
      "Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
 | 
						|
      "Final Answer: The prediction for x = 5 is 10.0.\u001b[0m\n",
 | 
						|
      "\n",
 | 
						|
      "\u001b[1m> Finished chain.\u001b[0m\n"
 | 
						|
     ]
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "text/plain": [
 | 
						|
       "'The prediction for x = 5 is 10.0.'"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "execution_count": 4,
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "execute_result"
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "agent_executor.run(\"\"\"Understand, write a single neuron neural network in PyTorch.\n",
 | 
						|
    "Take synthetic data for y=2x. Train for 1000 epochs and print every 100 epochs.\n",
 | 
						|
    "Return prediction for x = 5\"\"\")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "eb654671",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": []
 | 
						|
  }
 | 
						|
 ],
 | 
						|
 "metadata": {
 | 
						|
  "kernelspec": {
 | 
						|
   "display_name": "LangChain",
 | 
						|
   "language": "python",
 | 
						|
   "name": "langchain"
 | 
						|
  },
 | 
						|
  "language_info": {
 | 
						|
   "codemirror_mode": {
 | 
						|
    "name": "ipython",
 | 
						|
    "version": 3
 | 
						|
   },
 | 
						|
   "file_extension": ".py",
 | 
						|
   "mimetype": "text/x-python",
 | 
						|
   "name": "python",
 | 
						|
   "nbconvert_exporter": "python",
 | 
						|
   "pygments_lexer": "ipython3",
 | 
						|
   "version": "3.9.16"
 | 
						|
  }
 | 
						|
 },
 | 
						|
 "nbformat": 4,
 | 
						|
 "nbformat_minor": 5
 | 
						|
}
 |