Files
langchain/libs/partners/perplexity/langchain_perplexity/chat_models.py
2025-10-16 22:54:16 -04:00

498 lines
19 KiB
Python

"""Wrapper around Perplexity APIs."""
from __future__ import annotations
import logging
from collections.abc import Iterator, Mapping
from operator import itemgetter
from typing import Any, Literal, TypeAlias
import openai
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
BaseChatModel,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
FunctionMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
SystemMessageChunk,
ToolMessageChunk,
)
from langchain_core.messages.ai import UsageMetadata, subtract_usage
from langchain_core.output_parsers import JsonOutputParser, PydanticOutputParser
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.utils import get_pydantic_field_names, secret_from_env
from langchain_core.utils.function_calling import convert_to_json_schema
from langchain_core.utils.pydantic import is_basemodel_subclass
from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator
from typing_extensions import Self
_DictOrPydanticClass: TypeAlias = dict[str, Any] | type[BaseModel]
_DictOrPydantic: TypeAlias = dict | BaseModel
logger = logging.getLogger(__name__)
def _is_pydantic_class(obj: Any) -> bool:
return isinstance(obj, type) and is_basemodel_subclass(obj)
def _create_usage_metadata(token_usage: dict) -> UsageMetadata:
input_tokens = token_usage.get("prompt_tokens", 0)
output_tokens = token_usage.get("completion_tokens", 0)
total_tokens = token_usage.get("total_tokens", input_tokens + output_tokens)
return UsageMetadata(
input_tokens=input_tokens,
output_tokens=output_tokens,
total_tokens=total_tokens,
)
class ChatPerplexity(BaseChatModel):
"""`Perplexity AI` Chat models API.
Setup:
To use, you should have the environment variable `PPLX_API_KEY` set to your API key.
Any parameters that are valid to be passed to the openai.create call
can be passed in, even if not explicitly saved on this class.
```bash
export PPLX_API_KEY=your_api_key
```
Key init args - completion params:
model:
Name of the model to use. e.g. "sonar"
temperature:
Sampling temperature to use.
max_tokens:
Maximum number of tokens to generate.
streaming:
Whether to stream the results or not.
Key init args - client params:
pplx_api_key:
API key for PerplexityChat API.
request_timeout:
Timeout for requests to PerplexityChat completion API.
max_retries:
Maximum number of retries to make when generating.
See full list of supported init args and their descriptions in the params section.
Instantiate:
```python
from langchain_perplexity import ChatPerplexity
model = ChatPerplexity(model="sonar", temperature=0.7)
```
Invoke:
```python
messages = [("system", "You are a chatbot."), ("user", "Hello!")]
model.invoke(messages)
```
Invoke with structured output:
```python
from pydantic import BaseModel
class StructuredOutput(BaseModel):
role: str
content: str
model.with_structured_output(StructuredOutput)
model.invoke(messages)
```
Invoke with perplexity-specific params:
```python
model.invoke(messages, extra_body={"search_recency_filter": "week"})
```
Stream:
```python
for chunk in model.stream(messages):
print(chunk.content)
```
Token usage:
```python
response = model.invoke(messages)
response.usage_metadata
```
Response metadata:
```python
response = model.invoke(messages)
response.response_metadata
```
""" # noqa: E501
client: Any = None #: :meta private:
model: str = "sonar"
"""Model name."""
temperature: float = 0.7
"""What sampling temperature to use."""
model_kwargs: dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
pplx_api_key: SecretStr | None = Field(
default_factory=secret_from_env("PPLX_API_KEY", default=None), alias="api_key"
)
"""Base URL path for API requests,
leave blank if not using a proxy or service emulator."""
request_timeout: float | tuple[float, float] | None = Field(None, alias="timeout")
"""Timeout for requests to PerplexityChat completion API."""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
streaming: bool = False
"""Whether to stream the results or not."""
max_tokens: int | None = None
"""Maximum number of tokens to generate."""
model_config = ConfigDict(populate_by_name=True)
@property
def lc_secrets(self) -> dict[str, str]:
return {"pplx_api_key": "PPLX_API_KEY"}
@model_validator(mode="before")
@classmethod
def build_extra(cls, values: dict[str, Any]) -> Any:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
logger.warning(
f"""WARNING! {field_name} is not a default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that api key and python package exists in environment."""
try:
self.client = openai.OpenAI(
api_key=self.pplx_api_key.get_secret_value()
if self.pplx_api_key
else None,
base_url="https://api.perplexity.ai",
)
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
return self
@property
def _default_params(self) -> dict[str, Any]:
"""Get the default parameters for calling PerplexityChat API."""
return {
"max_tokens": self.max_tokens,
"stream": self.streaming,
"temperature": self.temperature,
**self.model_kwargs,
}
def _convert_message_to_dict(self, message: BaseMessage) -> dict[str, Any]:
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
else:
raise TypeError(f"Got unknown type {message}")
return message_dict
def _create_message_dicts(
self, messages: list[BaseMessage], stop: list[str] | None
) -> tuple[list[dict[str, Any]], dict[str, Any]]:
params = dict(self._invocation_params)
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
message_dicts = [self._convert_message_to_dict(m) for m in messages]
return message_dicts, params
def _convert_delta_to_message_chunk(
self, _dict: Mapping[str, Any], default_class: type[BaseMessageChunk]
) -> BaseMessageChunk:
role = _dict.get("role")
content = _dict.get("content") or ""
additional_kwargs: dict = {}
if _dict.get("function_call"):
function_call = dict(_dict["function_call"])
if "name" in function_call and function_call["name"] is None:
function_call["name"] = ""
additional_kwargs["function_call"] = function_call
if _dict.get("tool_calls"):
additional_kwargs["tool_calls"] = _dict["tool_calls"]
if role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=content)
elif role == "assistant" or default_class == AIMessageChunk:
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
elif role == "system" or default_class == SystemMessageChunk:
return SystemMessageChunk(content=content)
elif role == "function" or default_class == FunctionMessageChunk:
return FunctionMessageChunk(content=content, name=_dict["name"])
elif role == "tool" or default_class == ToolMessageChunk:
return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"])
elif role or default_class == ChatMessageChunk:
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
else:
return default_class(content=content) # type: ignore[call-arg]
def _stream(
self,
messages: list[BaseMessage],
stop: list[str] | None = None,
run_manager: CallbackManagerForLLMRun | None = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
default_chunk_class = AIMessageChunk
params.pop("stream", None)
if stop:
params["stop_sequences"] = stop
stream_resp = self.client.chat.completions.create(
messages=message_dicts, stream=True, **params
)
first_chunk = True
prev_total_usage: UsageMetadata | None = None
added_model_name: bool = False
for chunk in stream_resp:
if not isinstance(chunk, dict):
chunk = chunk.model_dump()
# Collect standard usage metadata (transform from aggregate to delta)
if total_usage := chunk.get("usage"):
lc_total_usage = _create_usage_metadata(total_usage)
if prev_total_usage:
usage_metadata: UsageMetadata | None = subtract_usage(
lc_total_usage, prev_total_usage
)
else:
usage_metadata = lc_total_usage
prev_total_usage = lc_total_usage
else:
usage_metadata = None
if len(chunk["choices"]) == 0:
continue
choice = chunk["choices"][0]
additional_kwargs = {}
if first_chunk:
additional_kwargs["citations"] = chunk.get("citations", [])
for attr in ["images", "related_questions", "search_results"]:
if attr in chunk:
additional_kwargs[attr] = chunk[attr]
generation_info = {}
if (model_name := chunk.get("model")) and not added_model_name:
generation_info["model_name"] = model_name
added_model_name = True
chunk = self._convert_delta_to_message_chunk(
choice["delta"], default_chunk_class
)
if isinstance(chunk, AIMessageChunk) and usage_metadata:
chunk.usage_metadata = usage_metadata
if first_chunk:
chunk.additional_kwargs |= additional_kwargs
first_chunk = False
if finish_reason := choice.get("finish_reason"):
generation_info["finish_reason"] = finish_reason
default_chunk_class = chunk.__class__
chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
def _generate(
self,
messages: list[BaseMessage],
stop: list[str] | None = None,
run_manager: CallbackManagerForLLMRun | None = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
if stream_iter:
return generate_from_stream(stream_iter)
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
response = self.client.chat.completions.create(messages=message_dicts, **params)
if usage := getattr(response, "usage", None):
usage_metadata = _create_usage_metadata(usage.model_dump())
else:
usage_metadata = None
additional_kwargs = {}
for attr in ["citations", "images", "related_questions", "search_results"]:
if hasattr(response, attr):
additional_kwargs[attr] = getattr(response, attr)
message = AIMessage(
content=response.choices[0].message.content,
additional_kwargs=additional_kwargs,
usage_metadata=usage_metadata,
response_metadata={"model_name": getattr(response, "model", self.model)},
)
return ChatResult(generations=[ChatGeneration(message=message)])
@property
def _invocation_params(self) -> Mapping[str, Any]:
"""Get the parameters used to invoke the model."""
pplx_creds: dict[str, Any] = {"model": self.model}
return {**pplx_creds, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "perplexitychat"
def with_structured_output(
self,
schema: _DictOrPydanticClass | None = None,
*,
method: Literal["json_schema"] = "json_schema",
include_raw: bool = False,
strict: bool | None = None,
**kwargs: Any,
) -> Runnable[LanguageModelInput, _DictOrPydantic]:
"""Model wrapper that returns outputs formatted to match the given schema for Preplexity.
Currently, Perplexity only supports "json_schema" method for structured output
as per their [official documentation](https://docs.perplexity.ai/guides/structured-outputs).
Args:
schema: The output schema. Can be passed in as:
- a JSON Schema,
- a `TypedDict` class,
- or a Pydantic class
method: The method for steering model generation, currently only support:
- `'json_schema'`: Use the JSON Schema to parse the model output
include_raw:
If `False` then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If `True`
then both the raw model response (a `BaseMessage`) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well.
The final output is always a `dict` with keys `'raw'`, `'parsed'`, and
`'parsing_error'`.
strict:
Unsupported: whether to enable strict schema adherence when generating
the output. This parameter is included for compatibility with other
chat models, but is currently ignored.
kwargs: Additional keyword args aren't supported.
Returns:
A `Runnable` that takes same inputs as a
`langchain_core.language_models.chat.BaseChatModel`. If `include_raw` is
`False` and `schema` is a Pydantic class, `Runnable` outputs an instance
of `schema` (i.e., a Pydantic object). Otherwise, if `include_raw` is
`False` then `Runnable` outputs a `dict`.
If `include_raw` is `True`, then `Runnable` outputs a `dict` with keys:
- `'raw'`: `BaseMessage`
- `'parsed'`: `None` if there was a parsing error, otherwise the type
depends on the `schema` as described above.
- `'parsing_error'`: `BaseException | None`
""" # noqa: E501
if method in ("function_calling", "json_mode"):
method = "json_schema"
if method == "json_schema":
if schema is None:
raise ValueError(
"schema must be specified when method is not 'json_schema'. "
"Received None."
)
is_pydantic_schema = _is_pydantic_class(schema)
response_format = convert_to_json_schema(schema)
llm = self.bind(
response_format={
"type": "json_schema",
"json_schema": {"schema": response_format},
},
ls_structured_output_format={
"kwargs": {"method": method},
"schema": response_format,
},
)
output_parser = (
PydanticOutputParser(pydantic_object=schema) # type: ignore[arg-type]
if is_pydantic_schema
else JsonOutputParser()
)
else:
raise ValueError(
f"Unrecognized method argument. Expected 'json_schema' Received:\
'{method}'"
)
if include_raw:
parser_assign = RunnablePassthrough.assign(
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
)
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
parser_with_fallback = parser_assign.with_fallbacks(
[parser_none], exception_key="parsing_error"
)
return RunnableMap(raw=llm) | parser_with_fallback
else:
return llm | output_parser