mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 16:08:59 +00:00 
			
		
		
		
	- added missed integration to `docs/ecosystem/integrations/` - updated notebooks to consistent format: changed titles, file names; added descriptions #### Who can review? @hwchase17 @dev2049
		
			
				
	
	
		
			78 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "75e378f5-55d7-44b6-8e2e-6d7b8b171ec4",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Amazon Bedrock\n",
 | |
|     "\n",
 | |
|     ">[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case.\n"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "2dbe40fa-7c0b-4bcb-a712-230bf613a42f",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "%pip install boto3"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "282239c8-e03a-4abc-86c1-ca6120231a20",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.embeddings import BedrockEmbeddings\n",
 | |
|     "\n",
 | |
|     "embeddings = BedrockEmbeddings(credentials_profile_name=\"bedrock-admin\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "19a46868-4bed-40cd-89ca-9813fbfda9cb",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "embeddings.embed_query(\"This is a content of the document\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "cf0349c4-6408-4342-8691-69276a388784",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "embeddings.embed_documents([\"This is a content of the document\"])"
 | |
|    ]
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.10.6"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |