mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 16:08:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			219 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			219 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "3651e424",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Getting Started\n",
 | |
|     "\n",
 | |
|     "This section contains everything related to prompts. A prompt is the value passed into the Language Model. This value can either be a string (for LLMs) or a list of messages (for Chat Models).\n",
 | |
|     "\n",
 | |
|     "The data types of these prompts are rather simple, but their construction is anything but. Value props of LangChain here include:\n",
 | |
|     "\n",
 | |
|     "- A standard interface for string prompts and message prompts\n",
 | |
|     "- A standard (to get started) interface for string prompt templates and message prompt templates\n",
 | |
|     "- Example Selectors: methods for inserting examples into the prompt for the language model to follow\n",
 | |
|     "- OutputParsers: methods for inserting instructions into the prompt as the format in which the language model should output information, as well as methods for then parsing that string output into a format.\n",
 | |
|     "\n",
 | |
|     "We have in depth documentation for specific types of string prompts, specific types of chat prompts, example selectors, and output parsers.\n",
 | |
|     "\n",
 | |
|     "Here, we cover a quick-start for a standard interface for getting started with simple prompts."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "ff34414d",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## PromptTemplates\n",
 | |
|     "\n",
 | |
|     "PromptTemplates are responsible for constructing a prompt value. These PromptTemplates can do things like formatting, example selection, and more. At a high level, these are basically objects that expose a `format_prompt` method for constructing a prompt. Under the hood, ANYTHING can happen."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 13,
 | |
|    "id": "7ce42639",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.prompts import PromptTemplate, ChatPromptTemplate"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 14,
 | |
|    "id": "5a178697",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "string_prompt = PromptTemplate.from_template(\"tell me a joke about {subject}\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 15,
 | |
|    "id": "f4ef6d6b",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "chat_prompt = ChatPromptTemplate.from_template(\"tell me a joke about {subject}\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 16,
 | |
|    "id": "5f16c8f1",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "string_prompt_value = string_prompt.format_prompt(subject=\"soccer\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 17,
 | |
|    "id": "863755ea",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "chat_prompt_value = chat_prompt.format_prompt(subject=\"soccer\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "8b3d8511",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## `to_string`\n",
 | |
|     "\n",
 | |
|     "This is what is called when passing to an LLM (which expects raw text)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 18,
 | |
|    "id": "1964a8a0",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "'tell me a joke about soccer'"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 18,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "string_prompt_value.to_string()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 19,
 | |
|    "id": "bf6c94e9",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "'Human: tell me a joke about soccer'"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 19,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "chat_prompt_value.to_string()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "c0825af8",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## `to_messages`\n",
 | |
|     "\n",
 | |
|     "This is what is called when passing to ChatModel (which expects a list of messages)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 20,
 | |
|    "id": "e4da46f3",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "[HumanMessage(content='tell me a joke about soccer', additional_kwargs={}, example=False)]"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 20,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "string_prompt_value.to_messages()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 21,
 | |
|    "id": "eae84b88",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "[HumanMessage(content='tell me a joke about soccer', additional_kwargs={}, example=False)]"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 21,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "chat_prompt_value.to_messages()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "a34fa440",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.9.1"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |