Files
langchain/libs/community/langchain_community/utilities/rememberizer.py
Harrison Chase 8516a03a02 langchain-community[major]: Upgrade community to pydantic 2 (#26011)
This PR upgrades langchain-community to pydantic 2.


* Most of this PR was auto-generated using code mods with gritql
(https://github.com/eyurtsev/migrate-pydantic/tree/main)
* Subsequently, some code was fixed manually due to accommodate
differences between pydantic 1 and 2

Breaking Changes:

- Use TEXTEMBED_API_KEY and TEXTEMBEB_API_URL for env variables for text
embed integrations:
cbea780492

Other changes:

- Added pydantic_settings as a required dependency for community. This
may be removed if we have enough time to convert the dependency into an
optional one.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-09-05 14:07:10 -04:00

53 lines
1.7 KiB
Python

"""Wrapper for Rememberizer APIs."""
from typing import Any, Dict, List, Optional, cast
import requests
from langchain_core.documents import Document
from langchain_core.utils import get_from_dict_or_env
from pydantic import BaseModel, model_validator
class RememberizerAPIWrapper(BaseModel):
"""Wrapper for Rememberizer APIs."""
top_k_results: int = 10
rememberizer_api_key: Optional[str] = None
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validate that api key in environment."""
rememberizer_api_key = get_from_dict_or_env(
values, "rememberizer_api_key", "REMEMBERIZER_API_KEY"
)
values["rememberizer_api_key"] = rememberizer_api_key
return values
def search(self, query: str) -> dict:
"""Search for a query in the Rememberizer API."""
url = f"https://api.rememberizer.ai/api/v1/documents/search?q={query}&n={self.top_k_results}"
response = requests.get(
url, headers={"x-api-key": cast(str, self.rememberizer_api_key)}
)
data = response.json()
if response.status_code != 200:
raise ValueError(f"API Error: {data}")
matched_chunks = data.get("matched_chunks", [])
return matched_chunks
def load(self, query: str) -> List[Document]:
matched_chunks = self.search(query)
docs = []
for matched_chunk in matched_chunks:
docs.append(
Document(
page_content=matched_chunk["matched_content"],
metadata=matched_chunk["document"],
)
)
return docs