langchain/docs/docs/integrations/text_embedding/together.ipynb
Oskar Stark 0d2cea747c
docs: streamline LangSmith teasing (#30302)
This can only be reviewed by [hiding
whitespaces](https://github.com/langchain-ai/langchain/pull/30302/files?diff=unified&w=1).

The motivation behind this PR is to get my hands on the docs and make
the LangSmith teasing short and clear.

Right now I don't know how to do it, but this could be an include in the
future.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-03-28 15:13:22 -04:00

276 lines
8.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Together AI\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# TogetherEmbeddings\n",
"\n",
"This will help you get started with Together embedding models using LangChain. For detailed documentation on `TogetherEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/together/embeddings/langchain_together.embeddings.TogetherEmbeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"Together\" />\n",
"\n",
"## Setup\n",
"\n",
"To access Together embedding models you'll need to create a/an Together account, get an API key, and install the `langchain-together` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [https://api.together.xyz/](https://api.together.xyz/) to sign up to Together and generate an API key. Once you've done this set the TOGETHER_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"TOGETHER_API_KEY\"):\n",
" os.environ[\"TOGETHER_API_KEY\"] = getpass.getpass(\"Enter your Together API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": 2,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Together integration lives in the `langchain-together` package:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "64853226",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU langchain-together"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_together import TogetherEmbeddings\n",
"\n",
"embeddings = TogetherEmbeddings(\n",
" model=\"togethercomputer/m2-bert-80M-8k-retrieval\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.3812227, -0.052848946, -0.10564975, 0.03480297, 0.2878488, 0.0084609175, 0.11605915, 0.05303011, \n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.3812227, -0.052848946, -0.10564975, 0.03480297, 0.2878488, 0.0084609175, 0.11605915, 0.05303011, \n",
"[0.066308185, -0.032866564, 0.115751594, 0.19082588, 0.14017, -0.26976448, -0.056340694, -0.26923394\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `TogetherEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/together/embeddings/langchain_together.embeddings.TogetherEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}