mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-30 23:29:54 +00:00 
			
		
		
		
	- Current docs are pointing to the wrong module, fixed - Added some explanation on how to find the necessary parameters - Added chat-based codegen example w/ retrievers Picture of the new page:  Please let me know if you'd like any tweaks! I wasn't sure if the example was too heavy for the page or not but decided "hey, I probably would want to see it" and so included it. Co-authored-by: maxtheman <max@maxs-mbp.lan>
		
			
				
	
	
		
			160 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "id": "33205b12",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Figma\n",
 | |
|     "\n",
 | |
|     "This notebook covers how to load data from the Figma REST API into a format that can be ingested into LangChain, along with example usage for code generation."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "90b69c94",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import os\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "from langchain.document_loaders.figma import FigmaFileLoader\n",
 | |
|     "\n",
 | |
|     "from langchain.text_splitter import CharacterTextSplitter\n",
 | |
|     "from langchain.chat_models import ChatOpenAI\n",
 | |
|     "from langchain.indexes import VectorstoreIndexCreator\n",
 | |
|     "from langchain.chains import ConversationChain, LLMChain\n",
 | |
|     "from langchain.memory import ConversationBufferWindowMemory\n",
 | |
|     "from langchain.prompts.chat import (\n",
 | |
|     "    ChatPromptTemplate,\n",
 | |
|     "    SystemMessagePromptTemplate,\n",
 | |
|     "    AIMessagePromptTemplate,\n",
 | |
|     "    HumanMessagePromptTemplate,\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "id": "d809744a",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "The Figma API Requires an access token, node_ids, and a file key.\n",
 | |
|     "\n",
 | |
|     "The file key can be pulled from the URL.  https://www.figma.com/file/{filekey}/sampleFilename\n",
 | |
|     "\n",
 | |
|     "Node IDs are also available in the URL. Click on anything and look for the '?node-id={node_id}' param.\n",
 | |
|     "\n",
 | |
|     "Access token instructions are in the Figma help center article: https://help.figma.com/hc/en-us/articles/8085703771159-Manage-personal-access-tokens"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "id": "13deb0f5",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "figma_loader = FigmaFileLoader(\n",
 | |
|     "    os.environ.get('ACCESS_TOKEN'),\n",
 | |
|     "    os.environ.get('NODE_IDS'),\n",
 | |
|     "    os.environ.get('FILE_KEY')\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "9ccc1e2f",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# see https://python.langchain.com/en/latest/modules/indexes/getting_started.html for more details\n",
 | |
|     "index = VectorstoreIndexCreator().from_loaders([figma_loader])\n",
 | |
|     "figma_doc_retriever = index.vectorstore.as_retriever()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "3e64cac2",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "def generate_code(human_input):\n",
 | |
|     "    # I have no idea if the Jon Carmack thing makes for better code. YMMV.\n",
 | |
|     "    # See https://python.langchain.com/en/latest/modules/models/chat/getting_started.html for chat info\n",
 | |
|     "    system_prompt_template = \"\"\"You are expert coder Jon Carmack. Use the provided design context to create idomatic HTML/CSS code as possible based on the user request.\n",
 | |
|     "    Everything must be inline in one file and your response must be directly renderable by the browser.\n",
 | |
|     "    Figma file nodes and metadata: {context}\"\"\"\n",
 | |
|     "\n",
 | |
|     "    human_prompt_template = \"Code the {text}. Ensure it's mobile responsive\"\n",
 | |
|     "    system_message_prompt = SystemMessagePromptTemplate.from_template(system_prompt_template)\n",
 | |
|     "    human_message_prompt = HumanMessagePromptTemplate.from_template(human_prompt_template)\n",
 | |
|     "    # delete the gpt-4 model_name to use the default gpt-3.5 turbo for faster results\n",
 | |
|     "    gpt_4 = ChatOpenAI(temperature=.02, model_name='gpt-4')\n",
 | |
|     "    # Use the retriever's 'get_relevant_documents' method if needed to filter down longer docs\n",
 | |
|     "    relevant_nodes = figma_doc_retriever.get_relevant_documents(human_input)\n",
 | |
|     "    conversation = [system_message_prompt, human_message_prompt]\n",
 | |
|     "    chat_prompt = ChatPromptTemplate.from_messages(conversation)\n",
 | |
|     "    response = gpt_4(chat_prompt.format_prompt( \n",
 | |
|     "        context=relevant_nodes, \n",
 | |
|     "        text=human_input).to_messages())\n",
 | |
|     "    return response"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "36a96114",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "response = generate_code(\"page top header\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "id": "baf9b2c9",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Returns the following in `response.content`:\n",
 | |
|     "```\n",
 | |
|     "<!DOCTYPE html>\\n<html lang=\"en\">\\n<head>\\n    <meta charset=\"UTF-8\">\\n    <meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\">\\n    <style>\\n        @import url(\\'https://fonts.googleapis.com/css2?family=DM+Sans:wght@500;700&family=Inter:wght@600&display=swap\\');\\n\\n        body {\\n            margin: 0;\\n            font-family: \\'DM Sans\\', sans-serif;\\n        }\\n\\n        .header {\\n            display: flex;\\n            justify-content: space-between;\\n            align-items: center;\\n            padding: 20px;\\n            background-color: #fff;\\n            box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);\\n        }\\n\\n        .header h1 {\\n            font-size: 16px;\\n            font-weight: 700;\\n            margin: 0;\\n        }\\n\\n        .header nav {\\n            display: flex;\\n            align-items: center;\\n        }\\n\\n        .header nav a {\\n            font-size: 14px;\\n            font-weight: 500;\\n            text-decoration: none;\\n            color: #000;\\n            margin-left: 20px;\\n        }\\n\\n        @media (max-width: 768px) {\\n            .header nav {\\n                display: none;\\n            }\\n        }\\n    </style>\\n</head>\\n<body>\\n    <header class=\"header\">\\n        <h1>Company Contact</h1>\\n        <nav>\\n            <a href=\"#\">Lorem Ipsum</a>\\n            <a href=\"#\">Lorem Ipsum</a>\\n            <a href=\"#\">Lorem Ipsum</a>\\n        </nav>\\n    </header>\\n</body>\\n</html>\n",
 | |
|     "```"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "38827110",
 | |
|    "metadata": {},
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.10.10"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |