mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-04 10:10:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			307 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			307 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
{
 | 
						|
 "cells": [
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "a4734146",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "# LLM Math\n",
 | 
						|
    "\n",
 | 
						|
    "Evaluating chains that know how to do math."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 6,
 | 
						|
   "id": "fdd7afae",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "# Comment this out if you are NOT using tracing\n",
 | 
						|
    "import os\n",
 | 
						|
    "os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\""
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 7,
 | 
						|
   "id": "ce05ffea",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "application/vnd.jupyter.widget-view+json": {
 | 
						|
       "model_id": "d028a511cede4de2b845b9a9954d6bea",
 | 
						|
       "version_major": 2,
 | 
						|
       "version_minor": 0
 | 
						|
      },
 | 
						|
      "text/plain": [
 | 
						|
       "Downloading readme:   0%|          | 0.00/21.0 [00:00<?, ?B/s]"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "display_data"
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "Downloading and preparing dataset json/LangChainDatasets--llm-math to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--llm-math-509b11d101165afa/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51...\n"
 | 
						|
     ]
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "application/vnd.jupyter.widget-view+json": {
 | 
						|
       "model_id": "a71c8e5a21dd4da5a20a354b544f7a58",
 | 
						|
       "version_major": 2,
 | 
						|
       "version_minor": 0
 | 
						|
      },
 | 
						|
      "text/plain": [
 | 
						|
       "Downloading data files:   0%|          | 0/1 [00:00<?, ?it/s]"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "display_data"
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "application/vnd.jupyter.widget-view+json": {
 | 
						|
       "model_id": "ae530ca624154a1a934075c47d1093a6",
 | 
						|
       "version_major": 2,
 | 
						|
       "version_minor": 0
 | 
						|
      },
 | 
						|
      "text/plain": [
 | 
						|
       "Downloading data:   0%|          | 0.00/631 [00:00<?, ?B/s]"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "display_data"
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "application/vnd.jupyter.widget-view+json": {
 | 
						|
       "model_id": "7a4968df05d84bc483aa2c5039aecafe",
 | 
						|
       "version_major": 2,
 | 
						|
       "version_minor": 0
 | 
						|
      },
 | 
						|
      "text/plain": [
 | 
						|
       "Extracting data files:   0%|          | 0/1 [00:00<?, ?it/s]"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "display_data"
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "application/vnd.jupyter.widget-view+json": {
 | 
						|
       "model_id": "",
 | 
						|
       "version_major": 2,
 | 
						|
       "version_minor": 0
 | 
						|
      },
 | 
						|
      "text/plain": [
 | 
						|
       "Generating train split: 0 examples [00:00, ? examples/s]"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "display_data"
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "Dataset json downloaded and prepared to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--llm-math-509b11d101165afa/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51. Subsequent calls will reuse this data.\n"
 | 
						|
     ]
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "application/vnd.jupyter.widget-view+json": {
 | 
						|
       "model_id": "9a2caed96225410fb1cc0f8f155eb766",
 | 
						|
       "version_major": 2,
 | 
						|
       "version_minor": 0
 | 
						|
      },
 | 
						|
      "text/plain": [
 | 
						|
       "  0%|          | 0/1 [00:00<?, ?it/s]"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "display_data"
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "from langchain.evaluation.loading import load_dataset\n",
 | 
						|
    "dataset = load_dataset(\"llm-math\")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "8a998d6f",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "## Setting up a chain\n",
 | 
						|
    "Now we need to create some pipelines for doing math."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 10,
 | 
						|
   "id": "7078f7f8",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "from langchain.llms import OpenAI\n",
 | 
						|
    "from langchain.chains import LLMMathChain"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 9,
 | 
						|
   "id": "2bd70c46",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "llm = OpenAI()"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 11,
 | 
						|
   "id": "954c3270",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "chain = LLMMathChain(llm=llm)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 13,
 | 
						|
   "id": "f252027e",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "predictions = chain.apply(dataset)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 22,
 | 
						|
   "id": "c8af7041",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "numeric_output = [float(p['answer'].strip().strip(\"Answer: \")) for p in predictions]"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 23,
 | 
						|
   "id": "cc09ffe4",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "correct = [example['answer'] == numeric_output[i] for i, example in enumerate(dataset)]"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 24,
 | 
						|
   "id": "585244e4",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "text/plain": [
 | 
						|
       "1.0"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "execution_count": 24,
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "execute_result"
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "sum(correct) / len(correct)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 25,
 | 
						|
   "id": "0d14ac78",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "input:  5\n",
 | 
						|
      "expected output : 5.0\n",
 | 
						|
      "prediction:  5.0\n",
 | 
						|
      "input:  5 + 3\n",
 | 
						|
      "expected output : 8.0\n",
 | 
						|
      "prediction:  8.0\n",
 | 
						|
      "input:  2^3.171\n",
 | 
						|
      "expected output : 9.006708689094099\n",
 | 
						|
      "prediction:  9.006708689094099\n",
 | 
						|
      "input:    2 ^3.171 \n",
 | 
						|
      "expected output : 9.006708689094099\n",
 | 
						|
      "prediction:  9.006708689094099\n",
 | 
						|
      "input:  two to the power of three point one hundred seventy one\n",
 | 
						|
      "expected output : 9.006708689094099\n",
 | 
						|
      "prediction:  9.006708689094099\n",
 | 
						|
      "input:  five + three squared minus 1\n",
 | 
						|
      "expected output : 13.0\n",
 | 
						|
      "prediction:  13.0\n",
 | 
						|
      "input:  2097 times 27.31\n",
 | 
						|
      "expected output : 57269.07\n",
 | 
						|
      "prediction:  57269.07\n",
 | 
						|
      "input:  two thousand ninety seven times twenty seven point thirty one\n",
 | 
						|
      "expected output : 57269.07\n",
 | 
						|
      "prediction:  57269.07\n",
 | 
						|
      "input:  209758 / 2714\n",
 | 
						|
      "expected output : 77.28739867354459\n",
 | 
						|
      "prediction:  77.28739867354459\n",
 | 
						|
      "input:  209758.857 divided by 2714.31\n",
 | 
						|
      "expected output : 77.27888745205964\n",
 | 
						|
      "prediction:  77.27888745205964\n"
 | 
						|
     ]
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "for i, example in enumerate(dataset):\n",
 | 
						|
    "    print(\"input: \", example[\"question\"])\n",
 | 
						|
    "    print(\"expected output :\", example[\"answer\"])\n",
 | 
						|
    "    print(\"prediction: \", numeric_output[i])"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "b9021ffd",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": []
 | 
						|
  }
 | 
						|
 ],
 | 
						|
 "metadata": {
 | 
						|
  "kernelspec": {
 | 
						|
   "display_name": "Python 3 (ipykernel)",
 | 
						|
   "language": "python",
 | 
						|
   "name": "python3"
 | 
						|
  },
 | 
						|
  "language_info": {
 | 
						|
   "codemirror_mode": {
 | 
						|
    "name": "ipython",
 | 
						|
    "version": 3
 | 
						|
   },
 | 
						|
   "file_extension": ".py",
 | 
						|
   "mimetype": "text/x-python",
 | 
						|
   "name": "python",
 | 
						|
   "nbconvert_exporter": "python",
 | 
						|
   "pygments_lexer": "ipython3",
 | 
						|
   "version": "3.9.1"
 | 
						|
  }
 | 
						|
 },
 | 
						|
 "nbformat": 4,
 | 
						|
 "nbformat_minor": 5
 | 
						|
}
 |