mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-04 02:03:32 +00:00 
			
		
		
		
	## Description This pull-request extends the existing vector search strategies of MongoDBAtlasVectorSearch to include Hybrid (Reciprocal Rank Fusion) and Full-text via new Retrievers. There is a small breaking change in the form of the `prefilter` kwarg to search. For this, and because we have now added a great deal of features, including programmatic Index creation/deletion since 0.1.0, we plan to bump the version to 0.2.0. ### Checklist * Unit tests have been extended * formatting has been applied * One mypy error remains which will either go away in CI or be simplified. --------- Signed-off-by: Casey Clements <casey.clements@mongodb.com> Co-authored-by: Erick Friis <erick@langchain.dev>
		
			
				
	
	
		
			309 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			309 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""LangChain MongoDB Caches."""
 | 
						|
 | 
						|
import json
 | 
						|
import logging
 | 
						|
import time
 | 
						|
from importlib.metadata import version
 | 
						|
from typing import Any, Callable, Dict, Optional, Union
 | 
						|
 | 
						|
from langchain_core.caches import RETURN_VAL_TYPE, BaseCache
 | 
						|
from langchain_core.embeddings import Embeddings
 | 
						|
from langchain_core.load.dump import dumps
 | 
						|
from langchain_core.load.load import loads
 | 
						|
from langchain_core.outputs import Generation
 | 
						|
from pymongo import MongoClient
 | 
						|
from pymongo.collection import Collection
 | 
						|
from pymongo.database import Database
 | 
						|
from pymongo.driver_info import DriverInfo
 | 
						|
 | 
						|
from langchain_mongodb.vectorstores import MongoDBAtlasVectorSearch
 | 
						|
 | 
						|
logger = logging.getLogger(__file__)
 | 
						|
 | 
						|
 | 
						|
class MongoDBCache(BaseCache):
 | 
						|
    """MongoDB Atlas cache
 | 
						|
 | 
						|
    A cache that uses MongoDB Atlas as a backend
 | 
						|
    """
 | 
						|
 | 
						|
    PROMPT = "prompt"
 | 
						|
    LLM = "llm"
 | 
						|
    RETURN_VAL = "return_val"
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        connection_string: str,
 | 
						|
        collection_name: str = "default",
 | 
						|
        database_name: str = "default",
 | 
						|
        **kwargs: Dict[str, Any],
 | 
						|
    ) -> None:
 | 
						|
        """
 | 
						|
        Initialize Atlas Cache. Creates collection on instantiation
 | 
						|
 | 
						|
        Args:
 | 
						|
            collection_name (str): Name of collection for cache to live.
 | 
						|
                Defaults to "default".
 | 
						|
            connection_string (str): Connection URI to MongoDB Atlas.
 | 
						|
                Defaults to "default".
 | 
						|
            database_name (str): Name of database for cache to live.
 | 
						|
                Defaults to "default".
 | 
						|
        """
 | 
						|
        self.client = _generate_mongo_client(connection_string)
 | 
						|
        self.__database_name = database_name
 | 
						|
        self.__collection_name = collection_name
 | 
						|
 | 
						|
        if self.__collection_name not in self.database.list_collection_names():
 | 
						|
            self.database.create_collection(self.__collection_name)
 | 
						|
            # Create an index on key and llm_string
 | 
						|
            self.collection.create_index([self.PROMPT, self.LLM])
 | 
						|
 | 
						|
    @property
 | 
						|
    def database(self) -> Database:
 | 
						|
        """Returns the database used to store cache values."""
 | 
						|
        return self.client[self.__database_name]
 | 
						|
 | 
						|
    @property
 | 
						|
    def collection(self) -> Collection:
 | 
						|
        """Returns the collection used to store cache values."""
 | 
						|
        return self.database[self.__collection_name]
 | 
						|
 | 
						|
    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
 | 
						|
        """Look up based on prompt and llm_string."""
 | 
						|
        return_doc = (
 | 
						|
            self.collection.find_one(self._generate_keys(prompt, llm_string)) or {}
 | 
						|
        )
 | 
						|
        return_val = return_doc.get(self.RETURN_VAL)
 | 
						|
        return _loads_generations(return_val) if return_val else None  # type: ignore
 | 
						|
 | 
						|
    def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
 | 
						|
        """Update cache based on prompt and llm_string."""
 | 
						|
        self.collection.update_one(
 | 
						|
            {**self._generate_keys(prompt, llm_string)},
 | 
						|
            {"$set": {self.RETURN_VAL: _dumps_generations(return_val)}},
 | 
						|
            upsert=True,
 | 
						|
        )
 | 
						|
 | 
						|
    def _generate_keys(self, prompt: str, llm_string: str) -> Dict[str, str]:
 | 
						|
        """Create keyed fields for caching layer"""
 | 
						|
        return {self.PROMPT: prompt, self.LLM: llm_string}
 | 
						|
 | 
						|
    def clear(self, **kwargs: Any) -> None:
 | 
						|
        """Clear cache that can take additional keyword arguments.
 | 
						|
        Any additional arguments will propagate as filtration criteria for
 | 
						|
        what gets deleted.
 | 
						|
 | 
						|
        E.g.
 | 
						|
            # Delete only entries that have llm_string as "fake-model"
 | 
						|
            self.clear(llm_string="fake-model")
 | 
						|
        """
 | 
						|
        self.collection.delete_many({**kwargs})
 | 
						|
 | 
						|
 | 
						|
class MongoDBAtlasSemanticCache(BaseCache, MongoDBAtlasVectorSearch):
 | 
						|
    """MongoDB Atlas Semantic cache.
 | 
						|
 | 
						|
    A Cache backed by a MongoDB Atlas server with vector-store support
 | 
						|
    """
 | 
						|
 | 
						|
    LLM = "llm_string"
 | 
						|
    RETURN_VAL = "return_val"
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        connection_string: str,
 | 
						|
        embedding: Embeddings,
 | 
						|
        collection_name: str = "default",
 | 
						|
        database_name: str = "default",
 | 
						|
        index_name: str = "default",
 | 
						|
        wait_until_ready: Optional[float] = None,
 | 
						|
        score_threshold: Optional[float] = None,
 | 
						|
        **kwargs: Dict[str, Any],
 | 
						|
    ):
 | 
						|
        """
 | 
						|
        Initialize Atlas VectorSearch Cache.
 | 
						|
        Assumes collection exists before instantiation
 | 
						|
 | 
						|
        Args:
 | 
						|
            connection_string (str): MongoDB URI to connect to MongoDB Atlas cluster.
 | 
						|
            embedding (Embeddings): Text embedding model to use.
 | 
						|
            collection_name (str): MongoDB Collection to add the texts to.
 | 
						|
                Defaults to "default".
 | 
						|
            database_name (str): MongoDB Database where to store texts.
 | 
						|
                Defaults to "default".
 | 
						|
            index_name: Name of the Atlas Search index.
 | 
						|
                defaults to 'default'
 | 
						|
            wait_until_ready (float): Wait this time for Atlas to finish indexing
 | 
						|
                the stored text. Defaults to None.
 | 
						|
        """
 | 
						|
        client = _generate_mongo_client(connection_string)
 | 
						|
        self.collection = client[database_name][collection_name]
 | 
						|
        self.score_threshold = score_threshold
 | 
						|
        self._wait_until_ready = wait_until_ready
 | 
						|
        super().__init__(
 | 
						|
            collection=self.collection,
 | 
						|
            embedding=embedding,
 | 
						|
            index_name=index_name,
 | 
						|
            **kwargs,  # type: ignore
 | 
						|
        )
 | 
						|
 | 
						|
    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
 | 
						|
        """Look up based on prompt and llm_string."""
 | 
						|
        post_filter_pipeline = (
 | 
						|
            [{"$match": {"score": {"$gte": self.score_threshold}}}]
 | 
						|
            if self.score_threshold
 | 
						|
            else None
 | 
						|
        )
 | 
						|
 | 
						|
        search_response = self.similarity_search_with_score(
 | 
						|
            prompt,
 | 
						|
            1,
 | 
						|
            pre_filter={self.LLM: {"$eq": llm_string}},
 | 
						|
            post_filter_pipeline=post_filter_pipeline,
 | 
						|
        )
 | 
						|
        if search_response:
 | 
						|
            return_val = search_response[0][0].metadata.get(self.RETURN_VAL)
 | 
						|
            response = _loads_generations(return_val) or return_val  # type: ignore
 | 
						|
            return response
 | 
						|
        return None
 | 
						|
 | 
						|
    def update(
 | 
						|
        self,
 | 
						|
        prompt: str,
 | 
						|
        llm_string: str,
 | 
						|
        return_val: RETURN_VAL_TYPE,
 | 
						|
        wait_until_ready: Optional[float] = None,
 | 
						|
    ) -> None:
 | 
						|
        """Update cache based on prompt and llm_string."""
 | 
						|
        self.add_texts(
 | 
						|
            [prompt],
 | 
						|
            [
 | 
						|
                {
 | 
						|
                    self.LLM: llm_string,
 | 
						|
                    self.RETURN_VAL: _dumps_generations(return_val),
 | 
						|
                }
 | 
						|
            ],
 | 
						|
        )
 | 
						|
        wait = self._wait_until_ready if wait_until_ready is None else wait_until_ready
 | 
						|
 | 
						|
        def is_indexed() -> bool:
 | 
						|
            return self.lookup(prompt, llm_string) == return_val
 | 
						|
 | 
						|
        if wait:
 | 
						|
            _wait_until(is_indexed, return_val, timeout=wait)
 | 
						|
 | 
						|
    def clear(self, **kwargs: Any) -> None:
 | 
						|
        """Clear cache that can take additional keyword arguments.
 | 
						|
        Any additional arguments will propagate as filtration criteria for
 | 
						|
        what gets deleted. It will delete any locally cached content regardless
 | 
						|
 | 
						|
        E.g.
 | 
						|
            # Delete only entries that have llm_string as "fake-model"
 | 
						|
            self.clear(llm_string="fake-model")
 | 
						|
        """
 | 
						|
        self.collection.delete_many({**kwargs})
 | 
						|
 | 
						|
 | 
						|
def _generate_mongo_client(connection_string: str) -> MongoClient:
 | 
						|
    return MongoClient(
 | 
						|
        connection_string,
 | 
						|
        driver=DriverInfo(name="Langchain", version=version("langchain-mongodb")),
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def _dumps_generations(generations: RETURN_VAL_TYPE) -> str:
 | 
						|
    """
 | 
						|
    Serialization for generic RETURN_VAL_TYPE, i.e. sequence of `Generation`
 | 
						|
 | 
						|
    Args:
 | 
						|
        generations (RETURN_VAL_TYPE): A list of language model generations.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        str: a single string representing a list of generations.
 | 
						|
 | 
						|
    This, and "_dumps_generations" are duplicated in this utility
 | 
						|
    from modules: "libs/community/langchain_community/cache.py"
 | 
						|
 | 
						|
    This function and its counterpart rely on
 | 
						|
    the dumps/loads pair with Reviver, so are able to deal
 | 
						|
    with all subclasses of Generation.
 | 
						|
 | 
						|
    Each item in the list can be `dumps`ed to a string,
 | 
						|
    then we make the whole list of strings into a json-dumped.
 | 
						|
    """
 | 
						|
    return json.dumps([dumps(_item) for _item in generations])
 | 
						|
 | 
						|
 | 
						|
def _loads_generations(generations_str: str) -> Union[RETURN_VAL_TYPE, None]:
 | 
						|
    """
 | 
						|
    Deserialization of a string into a generic RETURN_VAL_TYPE
 | 
						|
    (i.e. a sequence of `Generation`).
 | 
						|
 | 
						|
    Args:
 | 
						|
        generations_str (str): A string representing a list of generations.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        RETURN_VAL_TYPE: A list of generations.
 | 
						|
 | 
						|
 | 
						|
    This function and its counterpart rely on
 | 
						|
    the dumps/loads pair with Reviver, so are able to deal
 | 
						|
    with all subclasses of Generation.
 | 
						|
 | 
						|
    See `_dumps_generations`, the inverse of this function.
 | 
						|
 | 
						|
    Compatible with the legacy cache-blob format
 | 
						|
    Does not raise exceptions for malformed entries, just logs a warning
 | 
						|
    and returns none: the caller should be prepared for such a cache miss.
 | 
						|
 | 
						|
 | 
						|
    """
 | 
						|
    try:
 | 
						|
        generations = [loads(_item_str) for _item_str in json.loads(generations_str)]
 | 
						|
        return generations
 | 
						|
    except (json.JSONDecodeError, TypeError):
 | 
						|
        # deferring the (soft) handling to after the legacy-format attempt
 | 
						|
        pass
 | 
						|
 | 
						|
    try:
 | 
						|
        gen_dicts = json.loads(generations_str)
 | 
						|
        # not relying on `_load_generations_from_json` (which could disappear):
 | 
						|
        generations = [Generation(**generation_dict) for generation_dict in gen_dicts]
 | 
						|
        logger.warning(
 | 
						|
            f"Legacy 'Generation' cached blob encountered: '{generations_str}'"
 | 
						|
        )
 | 
						|
        return generations
 | 
						|
    except (json.JSONDecodeError, TypeError):
 | 
						|
        logger.warning(
 | 
						|
            f"Malformed/unparsable cached blob encountered: '{generations_str}'"
 | 
						|
        )
 | 
						|
        return None
 | 
						|
 | 
						|
 | 
						|
def _wait_until(
 | 
						|
    predicate: Callable, success_description: Any, timeout: float = 10.0
 | 
						|
) -> None:
 | 
						|
    """Wait up to 10 seconds (by default) for predicate to be true.
 | 
						|
 | 
						|
    E.g.:
 | 
						|
 | 
						|
        wait_until(lambda: client.primary == ('a', 1),
 | 
						|
                'connect to the primary')
 | 
						|
 | 
						|
    If the lambda-expression isn't true after 10 seconds, we raise
 | 
						|
    AssertionError("Didn't ever connect to the primary").
 | 
						|
 | 
						|
    Returns the predicate's first true value.
 | 
						|
    """
 | 
						|
    start = time.time()
 | 
						|
    interval = min(float(timeout) / 100, 0.1)
 | 
						|
    while True:
 | 
						|
        retval = predicate()
 | 
						|
        if retval:
 | 
						|
            return retval
 | 
						|
 | 
						|
        if time.time() - start > timeout:
 | 
						|
            raise TimeoutError("Didn't ever %s" % success_description)
 | 
						|
 | 
						|
        time.sleep(interval)
 |