mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-04 02:03:32 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			176 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			176 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
{
 | 
						|
 "cells": [
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "00695447",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "# How to add Memory to an LLMChain\n",
 | 
						|
    "\n",
 | 
						|
    "This notebook goes over how to use the Memory class with an LLMChain. For the purposes of this walkthrough, we will add  the `ConversationBufferMemory` class, although this can be any memory class."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 1,
 | 
						|
   "id": "9f1aaf47",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "from langchain.memory import ConversationBufferMemory\n",
 | 
						|
    "from langchain import OpenAI, LLMChain, PromptTemplate"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "4b066ced",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "The most important step is setting up the prompt correctly. In the below prompt, we have two input keys: one for the actual input, another for the input from the Memory class. Importantly, we make sure the keys in the PromptTemplate and the ConversationBufferMemory match up (`chat_history`)."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 2,
 | 
						|
   "id": "e5501eda",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "template = \"\"\"You are a chatbot having a conversation with a human.\n",
 | 
						|
    "\n",
 | 
						|
    "{chat_history}\n",
 | 
						|
    "Human: {human_input}\n",
 | 
						|
    "Chatbot:\"\"\"\n",
 | 
						|
    "\n",
 | 
						|
    "prompt = PromptTemplate(\n",
 | 
						|
    "    input_variables=[\"chat_history\", \"human_input\"], \n",
 | 
						|
    "    template=template\n",
 | 
						|
    ")\n",
 | 
						|
    "memory = ConversationBufferMemory(memory_key=\"chat_history\")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 3,
 | 
						|
   "id": "f6566275",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "llm_chain = LLMChain(\n",
 | 
						|
    "    llm=OpenAI(), \n",
 | 
						|
    "    prompt=prompt, \n",
 | 
						|
    "    verbose=True, \n",
 | 
						|
    "    memory=memory,\n",
 | 
						|
    ")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 4,
 | 
						|
   "id": "e2b189dc",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
 | 
						|
      "Prompt after formatting:\n",
 | 
						|
      "\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n",
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "Human: Hi there my friend\n",
 | 
						|
      "Chatbot:\u001b[0m\n",
 | 
						|
      "\n",
 | 
						|
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n"
 | 
						|
     ]
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "text/plain": [
 | 
						|
       "' Hi there, how are you doing today?'"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "execution_count": 4,
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "execute_result"
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "llm_chain.predict(human_input=\"Hi there my friend\")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 5,
 | 
						|
   "id": "a902729f",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
 | 
						|
      "Prompt after formatting:\n",
 | 
						|
      "\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n",
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "Human: Hi there my friend\n",
 | 
						|
      "AI:  Hi there, how are you doing today?\n",
 | 
						|
      "Human: Not to bad - how are you?\n",
 | 
						|
      "Chatbot:\u001b[0m\n",
 | 
						|
      "\n",
 | 
						|
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n"
 | 
						|
     ]
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "text/plain": [
 | 
						|
       "\" I'm doing great, thank you for asking!\""
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "execution_count": 5,
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "execute_result"
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "llm_chain.predict(human_input=\"Not to bad - how are you?\")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "ae5309bb",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": []
 | 
						|
  }
 | 
						|
 ],
 | 
						|
 "metadata": {
 | 
						|
  "kernelspec": {
 | 
						|
   "display_name": "Python 3 (ipykernel)",
 | 
						|
   "language": "python",
 | 
						|
   "name": "python3"
 | 
						|
  },
 | 
						|
  "language_info": {
 | 
						|
   "codemirror_mode": {
 | 
						|
    "name": "ipython",
 | 
						|
    "version": 3
 | 
						|
   },
 | 
						|
   "file_extension": ".py",
 | 
						|
   "mimetype": "text/x-python",
 | 
						|
   "name": "python",
 | 
						|
   "nbconvert_exporter": "python",
 | 
						|
   "pygments_lexer": "ipython3",
 | 
						|
   "version": "3.9.1"
 | 
						|
  }
 | 
						|
 },
 | 
						|
 "nbformat": 4,
 | 
						|
 "nbformat_minor": 5
 | 
						|
}
 |