mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-15 12:02:11 +00:00
**Description** Adds new output parser, this time enabling the output of LLM to be of an XML format. Seems to be particularly useful together with Claude model. Addresses [issue 9820](https://github.com/langchain-ai/langchain/issues/9820). **Twitter handle** @deepsense_ai @matt_wosinski
359 lines
10 KiB
Plaintext
359 lines
10 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "181b5b6d",
|
|
"metadata": {},
|
|
"source": [
|
|
"# XML parser\n",
|
|
"This output parser allows users to obtain results from LLM in the popular XML format. \n",
|
|
"\n",
|
|
"Keep in mind that large language models are leaky abstractions! You'll have to use an LLM with sufficient capacity to generate well-formed XML. \n",
|
|
"\n",
|
|
"In the following example we use Claude model (https://docs.anthropic.com/claude/docs) which works really well with XML tags."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "3b10fc55",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.prompts import PromptTemplate\n",
|
|
"from langchain.llms import Anthropic\n",
|
|
"from langchain.output_parsers import XMLOutputParser"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "909161d1",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"/home/mateusz/Documents/Projects/langchain/libs/langchain/langchain/llms/anthropic.py:170: UserWarning: This Anthropic LLM is deprecated. Please use `from langchain.chat_models import ChatAnthropic` instead\n",
|
|
" warnings.warn(\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"model = Anthropic(model=\"claude-2\", max_tokens_to_sample=512, temperature=0.1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "da312f86-0d2a-4aef-a09d-1e72bd0ea9b1",
|
|
"metadata": {},
|
|
"source": [
|
|
"Let's start with the simple request to the model."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "b03785af-69fc-40a1-a1be-c04ed6fade70",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" Here is the shortened filmography for Tom Hanks enclosed in <movie> tags:\n",
|
|
"\n",
|
|
"<movie>Splash (1984)</movie>\n",
|
|
"<movie>Big (1988)</movie> \n",
|
|
"<movie>A League of Their Own (1992)</movie>\n",
|
|
"<movie>Sleepless in Seattle (1993)</movie> \n",
|
|
"<movie>Forrest Gump (1994)</movie>\n",
|
|
"<movie>Apollo 13 (1995)</movie>\n",
|
|
"<movie>Toy Story (1995)</movie>\n",
|
|
"<movie>Saving Private Ryan (1998)</movie>\n",
|
|
"<movie>Cast Away (2000)</movie>\n",
|
|
"<movie>The Da Vinci Code (2006)</movie>\n",
|
|
"<movie>Toy Story 3 (2010)</movie>\n",
|
|
"<movie>Captain Phillips (2013)</movie>\n",
|
|
"<movie>Bridge of Spies (2015)</movie>\n",
|
|
"<movie>Toy Story 4 (2019)</movie>\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"actor_query = \"Generate the shortened filmography for Tom Hanks.\"\n",
|
|
"output = model(\n",
|
|
" f\"\"\"\n",
|
|
"\n",
|
|
"Human:\n",
|
|
"{actor_query}\n",
|
|
"Please enclose the movies in <movie></movie> tags\n",
|
|
"Assistant:\n",
|
|
"\"\"\"\n",
|
|
")\n",
|
|
"print(output)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4db65781-3d54-4ba6-ae26-5b4ead47a4c8",
|
|
"metadata": {},
|
|
"source": [
|
|
"Now we will use the XMLOutputParser in order to get the structured output."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "87ba8d11",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"<filmography>\n",
|
|
" <movie>\n",
|
|
" <title>Splash</title>\n",
|
|
" <year>1984</year>\n",
|
|
" </movie>\n",
|
|
" \n",
|
|
" <movie>\n",
|
|
" <title>Big</title> \n",
|
|
" <year>1988</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>A League of Their Own</title>\n",
|
|
" <year>1992</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>Sleepless in Seattle</title>\n",
|
|
" <year>1993</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>Forrest Gump</title>\n",
|
|
" <year>1994</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>Toy Story</title>\n",
|
|
" <year>1995</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>Apollo 13</title>\n",
|
|
" <year>1995</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>Saving Private Ryan</title>\n",
|
|
" <year>1998</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>Cast Away</title>\n",
|
|
" <year>2000</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>Catch Me If You Can</title>\n",
|
|
" <year>2002</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>The Polar Express</title>\n",
|
|
" <year>2004</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>Charlie Wilson's War</title>\n",
|
|
" <year>2007</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>Toy Story 3</title>\n",
|
|
" <year>2010</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>Captain Phillips</title>\n",
|
|
" <year>2013</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>Bridge of Spies</title>\n",
|
|
" <year>2015</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>The Post</title>\n",
|
|
" <year>2017</year>\n",
|
|
" </movie>\n",
|
|
"\n",
|
|
" <movie>\n",
|
|
" <title>A Beautiful Day in the Neighborhood</title> \n",
|
|
" <year>2019</year>\n",
|
|
" </movie>\n",
|
|
"</filmography>\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"parser = XMLOutputParser()\n",
|
|
"\n",
|
|
"prompt = PromptTemplate(\n",
|
|
" template=\"\"\"\n",
|
|
" \n",
|
|
" Human:\n",
|
|
" {query}\n",
|
|
" {format_instructions}\n",
|
|
" Assistant:\"\"\",\n",
|
|
" input_variables=[\"query\"],\n",
|
|
" partial_variables={\"format_instructions\": parser.get_format_instructions()},\n",
|
|
")\n",
|
|
"\n",
|
|
"_input = prompt.format_prompt(query=actor_query)\n",
|
|
"\n",
|
|
"output = model(_input.to_string())\n",
|
|
"print(output)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "1c4c47ee",
|
|
"metadata": {},
|
|
"source": [
|
|
"And here parsed output is shown:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "4c864dc9",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'filmography': [{'movie': [{'title': 'Splash'}, {'year': '1984'}]},\n",
|
|
" {'movie': [{'title': 'Big'}, {'year': '1988'}]},\n",
|
|
" {'movie': [{'title': 'A League of Their Own'}, {'year': '1992'}]},\n",
|
|
" {'movie': [{'title': 'Sleepless in Seattle'}, {'year': '1993'}]},\n",
|
|
" {'movie': [{'title': 'Forrest Gump'}, {'year': '1994'}]},\n",
|
|
" {'movie': [{'title': 'Toy Story'}, {'year': '1995'}]},\n",
|
|
" {'movie': [{'title': 'Apollo 13'}, {'year': '1995'}]},\n",
|
|
" {'movie': [{'title': 'Saving Private Ryan'}, {'year': '1998'}]},\n",
|
|
" {'movie': [{'title': 'Cast Away'}, {'year': '2000'}]},\n",
|
|
" {'movie': [{'title': 'Catch Me If You Can'}, {'year': '2002'}]},\n",
|
|
" {'movie': [{'title': 'The Polar Express'}, {'year': '2004'}]},\n",
|
|
" {'movie': [{'title': \"Charlie Wilson's War\"}, {'year': '2007'}]},\n",
|
|
" {'movie': [{'title': 'Toy Story 3'}, {'year': '2010'}]},\n",
|
|
" {'movie': [{'title': 'Captain Phillips'}, {'year': '2013'}]},\n",
|
|
" {'movie': [{'title': 'Bridge of Spies'}, {'year': '2015'}]},\n",
|
|
" {'movie': [{'title': 'The Post'}, {'year': '2017'}]},\n",
|
|
" {'movie': [{'title': 'A Beautiful Day in the Neighborhood'},\n",
|
|
" {'year': '2019'}]}]}"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"parser.parse(output)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "327f5479-77e0-4549-8393-2cd7a286d491",
|
|
"metadata": {},
|
|
"source": [
|
|
"Finally, let's add some tags to tailor the output to our needs."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "b722a235",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'movies': [{'actor': [{'name': 'Tom Hanks'},\n",
|
|
" {'film': [{'name': 'Splash'}, {'genre': 'Comedy'}]},\n",
|
|
" {'film': [{'name': 'Big'}, {'genre': 'Comedy'}]},\n",
|
|
" {'film': [{'name': 'A League of Their Own'}, {'genre': 'Drama'}]},\n",
|
|
" {'film': [{'name': 'Sleepless in Seattle'}, {'genre': 'Romance'}]},\n",
|
|
" {'film': [{'name': 'Forrest Gump'}, {'genre': 'Drama'}]},\n",
|
|
" {'film': [{'name': 'Toy Story'}, {'genre': 'Animation'}]},\n",
|
|
" {'film': [{'name': 'Apollo 13'}, {'genre': 'Drama'}]},\n",
|
|
" {'film': [{'name': 'Saving Private Ryan'}, {'genre': 'War'}]},\n",
|
|
" {'film': [{'name': 'Cast Away'}, {'genre': 'Adventure'}]},\n",
|
|
" {'film': [{'name': 'The Green Mile'}, {'genre': 'Drama'}]}]}]}"
|
|
]
|
|
},
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"parser = XMLOutputParser(tags=[\"movies\", \"actor\", \"film\", \"name\", \"genre\"])\n",
|
|
"prompt = PromptTemplate(\n",
|
|
" template=\"\"\"\n",
|
|
" \n",
|
|
" Human:\n",
|
|
" {query}\n",
|
|
" {format_instructions}\n",
|
|
" Assistant:\"\"\",\n",
|
|
" input_variables=[\"query\"],\n",
|
|
" partial_variables={\"format_instructions\": parser.get_format_instructions()},\n",
|
|
")\n",
|
|
"\n",
|
|
"\n",
|
|
"_input = prompt.format_prompt(query=actor_query)\n",
|
|
"\n",
|
|
"output = model(_input.to_string())\n",
|
|
"\n",
|
|
"parser.parse(output)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "808a5df5-b11e-42a0-bd7a-6b95ca0c3eba",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.16"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|