mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-29 07:19:59 +00:00
<!-- Thank you for contributing to LangChain! Replace this entire comment with: - **Description:** a description of the change, - **Issue:** the issue # it fixes (if applicable), - **Dependencies:** any dependencies required for this change, - **Tag maintainer:** for a quicker response, tag the relevant maintainer (see below), - **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out! Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md If you're adding a new integration, please include: 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/extras` directory. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17. --> Adds `WasmChat` integration. `WasmChat` runs GGUF models locally or via chat service in lightweight and secure WebAssembly containers. In this PR, `WasmChatService` is introduced as the first step of the integration. `WasmChatService` is driven by [llama-api-server](https://github.com/second-state/llama-utils) and [WasmEdge Runtime](https://wasmedge.org/). --------- Signed-off-by: Xin Liu <sam@secondstate.io>
145 lines
4.9 KiB
Python
145 lines
4.9 KiB
Python
import json
|
|
import logging
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
import requests
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.chat_models import BaseChatModel
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatResult
|
|
from langchain_core.pydantic_v1 import root_validator
|
|
from langchain_core.utils import get_pydantic_field_names
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|
role = _dict["role"]
|
|
if role == "user":
|
|
return HumanMessage(content=_dict["content"])
|
|
elif role == "assistant":
|
|
return AIMessage(content=_dict.get("content", "") or "")
|
|
else:
|
|
return ChatMessage(content=_dict["content"], role=role)
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
message_dict: Dict[str, Any]
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": message.content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
else:
|
|
raise TypeError(f"Got unknown type {message}")
|
|
|
|
return message_dict
|
|
|
|
|
|
class WasmChatService(BaseChatModel):
|
|
"""Chat with LLMs via `llama-api-server`
|
|
|
|
For the information about `llama-api-server`, visit https://github.com/second-state/llama-utils
|
|
"""
|
|
|
|
request_timeout: int = 60
|
|
"""request timeout for chat http requests"""
|
|
service_url: Optional[str] = None
|
|
"""URL of WasmChat service"""
|
|
model: str = "NA"
|
|
"""model name, default is `NA`."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
allow_population_by_field_name = True
|
|
|
|
@root_validator(pre=True)
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
extra = values.get("model_kwargs", {})
|
|
for field_name in list(values):
|
|
if field_name in extra:
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
if field_name not in all_required_field_names:
|
|
logger.warning(
|
|
f"""WARNING! {field_name} is not default parameter.
|
|
{field_name} was transferred to model_kwargs.
|
|
Please confirm that {field_name} is what you intended."""
|
|
)
|
|
extra[field_name] = values.pop(field_name)
|
|
|
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
|
if invalid_model_kwargs:
|
|
raise ValueError(
|
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
|
)
|
|
|
|
values["model_kwargs"] = extra
|
|
return values
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
res = self._chat(messages, **kwargs)
|
|
|
|
if res.status_code != 200:
|
|
raise ValueError(f"Error code: {res.status_code}, reason: {res.reason}")
|
|
|
|
response = res.json()
|
|
|
|
return self._create_chat_result(response)
|
|
|
|
def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response:
|
|
if self.service_url is None:
|
|
res = requests.models.Response()
|
|
res.status_code = 503
|
|
res.reason = "The IP address or port of the chat service is incorrect."
|
|
return res
|
|
|
|
service_url = f"{self.service_url}/v1/chat/completions"
|
|
|
|
payload = {
|
|
"model": self.model,
|
|
"messages": [_convert_message_to_dict(m) for m in messages],
|
|
}
|
|
|
|
res = requests.post(
|
|
url=service_url,
|
|
timeout=self.request_timeout,
|
|
headers={
|
|
"accept": "application/json",
|
|
"Content-Type": "application/json",
|
|
},
|
|
data=json.dumps(payload),
|
|
)
|
|
|
|
return res
|
|
|
|
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
|
|
message = _convert_dict_to_message(response["choices"][0].get("message"))
|
|
generations = [ChatGeneration(message=message)]
|
|
|
|
token_usage = response["usage"]
|
|
llm_output = {"token_usage": token_usage, "model": self.model}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "wasm-chat"
|