mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-04 14:13:29 +00:00
This PR introduces the following Runnables: 1. BaseRateLimiter: an abstraction for specifying a time based rate limiter as a Runnable 2. InMemoryRateLimiter: Provides an in-memory implementation of a rate limiter ## Example ```python from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda from datetime import datetime foo = InMemoryRateLimiter(requests_per_second=0.5) def meow(x): print(datetime.now().strftime("%H:%M:%S.%f")) return x chain = foo | meow for _ in range(10): print(chain.invoke('hello')) ``` Produces: ``` 17:12:07.530151 hello 17:12:09.537932 hello 17:12:11.548375 hello 17:12:13.558383 hello 17:12:15.568348 hello 17:12:17.578171 hello 17:12:19.587508 hello 17:12:21.597877 hello 17:12:23.607707 hello 17:12:25.617978 hello ```  ## Interface The rate limiter uses the following interface for acquiring a token: ```python class BaseRateLimiter(Runnable[Input, Output], abc.ABC): @abc.abstractmethod def acquire(self, *, blocking: bool = True) -> bool: """Attempt to acquire the necessary tokens for the rate limiter.``` ``` The flag `blocking` has been added to the abstraction to allow supporting streaming (which is easier if blocking=False). ## Limitations - The rate limiter is not designed to work across different processes. It is an in-memory rate limiter, but it is thread safe. - The rate limiter only supports time-based rate limiting. It does not take into account the size of the request or any other factors. - The current implementation does not handle streaming inputs well and will consume all inputs even if the rate limit has been reached. Better support for streaming inputs will be added in the future. - When the rate limiter is combined with another runnable via a RunnableSequence, usage of .batch() or .abatch() will only respect the average rate limit. There will be bursty behavior as .batch() and .abatch() wait for each step to complete before starting the next step. One way to mitigate this is to use batch_as_completed() or abatch_as_completed(). ## Bursty behavior in `batch` and `abatch` When the rate limiter is combined with another runnable via a RunnableSequence, usage of .batch() or .abatch() will only respect the average rate limit. There will be bursty behavior as .batch() and .abatch() wait for each step to complete before starting the next step. This becomes a problem if users are using `batch` and `abatch` with many inputs (e.g., 100). In this case, there will be a burst of 100 inputs into the batch of the rate limited runnable. 1. Using a RunnableBinding The API would look like: ```python from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda rate_limiter = InMemoryRateLimiter(requests_per_second=0.5) def meow(x): return x rate_limited_meow = RunnableLambda(meow).with_rate_limiter(rate_limiter) ``` 2. Another option is to add some init option to RunnableSequence that changes `.batch()` to be depth first (e.g., by delegating to `batch_as_completed`) ```python RunnableSequence(first=rate_limiter, last=model, how='batch-depth-first') ``` Pros: Does not require Runnable Binding Cons: Feels over-complicated |
||
---|---|---|
.. | ||
__init__.py | ||
base.py | ||
branch.py | ||
config.py | ||
configurable.py | ||
fallbacks.py | ||
graph_ascii.py | ||
graph_mermaid.py | ||
graph_png.py | ||
graph.py | ||
history.py | ||
learnable.py | ||
passthrough.py | ||
rate_limiter.py | ||
retry.py | ||
router.py | ||
schema.py | ||
utils.py |