mirror of
https://github.com/hwchase17/langchain.git
synced 2025-10-21 17:25:34 +00:00
supports following UX ```python class SubTool(TypedDict): """Subtool docstring""" args: Annotated[Dict[str, Any], {}, "this does bar"] class Tool(TypedDict): """Docstring Args: arg1: foo """ arg1: str arg2: Union[int, str] arg3: Optional[List[SubTool]] arg4: Annotated[Literal["bar", "baz"], ..., "this does foo"] arg5: Annotated[Optional[float], None] ``` - can parse google style docstring - can use Annotated to specify default value (second arg) - can use Annotated to specify arg description (third arg) - can have nested complex types
langchain-ollama
This package contains the LangChain integration with Ollama
Installation
pip install -U langchain-ollama
You will also need to run the Ollama server locally. You can download it here.
Chat Models
ChatOllama
class exposes chat models from Ollama.
from langchain_ollama import ChatOllama
llm = ChatOllama(model="llama3-groq-tool-use")
llm.invoke("Sing a ballad of LangChain.")
Embeddings
OllamaEmbeddings
class exposes embeddings from Ollama.
from langchain_ollama import OllamaEmbeddings
embeddings = OllamaEmbeddings(model="llama3")
embeddings.embed_query("What is the meaning of life?")
LLMs
OllamaLLM
class exposes LLMs from Ollama.
from langchain_ollama import OllamaLLM
llm = OllamaLLM(model="llama3")
llm.invoke("The meaning of life is")