mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-29 07:19:59 +00:00
This PR upgrades langchain-community to pydantic 2.
* Most of this PR was auto-generated using code mods with gritql
(https://github.com/eyurtsev/migrate-pydantic/tree/main)
* Subsequently, some code was fixed manually due to accommodate
differences between pydantic 1 and 2
Breaking Changes:
- Use TEXTEMBED_API_KEY and TEXTEMBEB_API_URL for env variables for text
embed integrations:
cbea780492
Other changes:
- Added pydantic_settings as a required dependency for community. This
may be removed if we have enough time to convert the dependency into an
optional one.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
53 lines
1.7 KiB
Python
53 lines
1.7 KiB
Python
"""Wrapper for Rememberizer APIs."""
|
|
|
|
from typing import Any, Dict, List, Optional, cast
|
|
|
|
import requests
|
|
from langchain_core.documents import Document
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
from pydantic import BaseModel, model_validator
|
|
|
|
|
|
class RememberizerAPIWrapper(BaseModel):
|
|
"""Wrapper for Rememberizer APIs."""
|
|
|
|
top_k_results: int = 10
|
|
rememberizer_api_key: Optional[str] = None
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_environment(cls, values: Dict) -> Any:
|
|
"""Validate that api key in environment."""
|
|
rememberizer_api_key = get_from_dict_or_env(
|
|
values, "rememberizer_api_key", "REMEMBERIZER_API_KEY"
|
|
)
|
|
values["rememberizer_api_key"] = rememberizer_api_key
|
|
|
|
return values
|
|
|
|
def search(self, query: str) -> dict:
|
|
"""Search for a query in the Rememberizer API."""
|
|
url = f"https://api.rememberizer.ai/api/v1/documents/search?q={query}&n={self.top_k_results}"
|
|
response = requests.get(
|
|
url, headers={"x-api-key": cast(str, self.rememberizer_api_key)}
|
|
)
|
|
data = response.json()
|
|
|
|
if response.status_code != 200:
|
|
raise ValueError(f"API Error: {data}")
|
|
|
|
matched_chunks = data.get("matched_chunks", [])
|
|
return matched_chunks
|
|
|
|
def load(self, query: str) -> List[Document]:
|
|
matched_chunks = self.search(query)
|
|
docs = []
|
|
for matched_chunk in matched_chunks:
|
|
docs.append(
|
|
Document(
|
|
page_content=matched_chunk["matched_content"],
|
|
metadata=matched_chunk["document"],
|
|
)
|
|
)
|
|
return docs
|