mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-11 18:16:12 +00:00
Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com> Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com> Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com> Co-authored-by: ZhangShenao <15201440436@163.com> Co-authored-by: Friso H. Kingma <fhkingma@gmail.com> Co-authored-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Nuno Campos <nuno@langchain.dev> Co-authored-by: Morgante Pell <morgantep@google.com>
326 lines
8.1 KiB
Plaintext
326 lines
8.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "84180ad0-66cd-43e5-b0b8-2067a29e16ba",
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"source": [
|
|
"# Apache Doris\n",
|
|
"\n",
|
|
">[Apache Doris](https://doris.apache.org/) is a modern data warehouse for real-time analytics.\n",
|
|
"It delivers lightning-fast analytics on real-time data at scale.\n",
|
|
"\n",
|
|
">Usually `Apache Doris` is categorized into OLAP, and it has showed excellent performance in [ClickBench — a Benchmark For Analytical DBMS](https://benchmark.clickhouse.com/). Since it has a super-fast vectorized execution engine, it could also be used as a fast vectordb.\n",
|
|
"\n",
|
|
"You'll need to install `langchain-community` with `pip install -qU langchain-community` to use this integration\n",
|
|
"\n",
|
|
"Here we'll show how to use the Apache Doris Vector Store."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "1685854f",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Setup"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "311d44bb-4aca-4f3b-8f97-5e1f29238e40",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%pip install --upgrade --quiet pymysql"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2c891bba",
|
|
"metadata": {},
|
|
"source": [
|
|
"Set `update_vectordb = False` at the beginning. If there is no docs updated, then we don't need to rebuild the embeddings of docs"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f4e6ca20-79dd-482a-8f68-af9d7dd59c7c",
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip install sqlalchemy\n",
|
|
"!pip install langchain"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "96f7c7a2-4811-4fdf-87f5-c60772f51fe1",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2024-02-14T12:54:01.392500Z",
|
|
"start_time": "2024-02-14T12:53:58.866615Z"
|
|
},
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.chains import RetrievalQA\n",
|
|
"from langchain_community.document_loaders import (\n",
|
|
" DirectoryLoader,\n",
|
|
" UnstructuredMarkdownLoader,\n",
|
|
")\n",
|
|
"from langchain_community.vectorstores.apache_doris import (\n",
|
|
" ApacheDoris,\n",
|
|
" ApacheDorisSettings,\n",
|
|
")\n",
|
|
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
|
|
"from langchain_text_splitters import TokenTextSplitter\n",
|
|
"\n",
|
|
"update_vectordb = False"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ee821c00",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Load docs and split them into tokens"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "34ba0cfd",
|
|
"metadata": {},
|
|
"source": [
|
|
"Load all markdown files under the `docs` directory\n",
|
|
"\n",
|
|
"for Apache Doris documents, you can clone repo from https://github.com/apache/doris, and there is `docs` directory in it."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "799edf20-bcf4-4a65-bff7-b907f6bdba20",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2024-02-14T12:55:24.128917Z",
|
|
"start_time": "2024-02-14T12:55:19.463831Z"
|
|
},
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = DirectoryLoader(\n",
|
|
" \"./docs\", glob=\"**/*.md\", loader_cls=UnstructuredMarkdownLoader\n",
|
|
")\n",
|
|
"documents = loader.load()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "b415fe2a",
|
|
"metadata": {},
|
|
"source": [
|
|
"Split docs into tokens, and set `update_vectordb = True` because there are new docs/tokens."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "0dc5ba83-62ef-4f61-a443-e872f251e7da",
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# load text splitter and split docs into snippets of text\n",
|
|
"text_splitter = TokenTextSplitter(chunk_size=400, chunk_overlap=50)\n",
|
|
"split_docs = text_splitter.split_documents(documents)\n",
|
|
"\n",
|
|
"# tell vectordb to update text embeddings\n",
|
|
"update_vectordb = True"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "46966e25-9449-4a36-87d1-c0b25dce2994",
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"source": [
|
|
"split_docs[-20]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "99422e95-b407-43eb-aa68-9a62363fc82f",
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"source": [
|
|
"print(\"# docs = %d, # splits = %d\" % (len(documents), len(split_docs)))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "e780d77f-3f96-4690-a10f-f87566f7ccc6",
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"source": [
|
|
"## Create vectordb instance"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "15702d9c",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Use Apache Doris as vectordb"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "ced7dbe1",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2024-02-14T12:55:39.508287Z",
|
|
"start_time": "2024-02-14T12:55:39.500370Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"def gen_apache_doris(update_vectordb, embeddings, settings):\n",
|
|
" if update_vectordb:\n",
|
|
" docsearch = ApacheDoris.from_documents(split_docs, embeddings, config=settings)\n",
|
|
" else:\n",
|
|
" docsearch = ApacheDoris(embeddings, settings)\n",
|
|
" return docsearch"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "15d86fda",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Convert tokens into embeddings and put them into vectordb"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ff1322ea",
|
|
"metadata": {},
|
|
"source": [
|
|
"Here we use Apache Doris as vectordb, you can configure Apache Doris instance via `ApacheDorisSettings`.\n",
|
|
"\n",
|
|
"Configuring Apache Doris instance is pretty much like configuring mysql instance. You need to specify:\n",
|
|
"1. host/port\n",
|
|
"2. username(default: 'root')\n",
|
|
"3. password(default: '')\n",
|
|
"4. database(default: 'default')\n",
|
|
"5. table(default: 'langchain')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "b34f8c31-c173-4902-8168-2e838ddfb9e9",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2024-02-14T12:56:02.671291Z",
|
|
"start_time": "2024-02-14T12:55:48.350294Z"
|
|
},
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"from getpass import getpass\n",
|
|
"\n",
|
|
"if \"OPENAI_API_KEY\" not in os.environ:\n",
|
|
" os.environ[\"OPENAI_API_KEY\"] = getpass()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c53ab3f2-9e34-4424-8b07-6292bde67e14",
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"update_vectordb = True\n",
|
|
"\n",
|
|
"embeddings = OpenAIEmbeddings()\n",
|
|
"\n",
|
|
"# configure Apache Doris settings(host/port/user/pw/db)\n",
|
|
"settings = ApacheDorisSettings()\n",
|
|
"settings.port = 9030\n",
|
|
"settings.host = \"172.30.34.130\"\n",
|
|
"settings.username = \"root\"\n",
|
|
"settings.password = \"\"\n",
|
|
"settings.database = \"langchain\"\n",
|
|
"docsearch = gen_apache_doris(update_vectordb, embeddings, settings)\n",
|
|
"\n",
|
|
"print(docsearch)\n",
|
|
"\n",
|
|
"update_vectordb = False"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "bde66626",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Build QA and ask question to it"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "84921814",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = OpenAI()\n",
|
|
"qa = RetrievalQA.from_chain_type(\n",
|
|
" llm=llm, chain_type=\"stuff\", retriever=docsearch.as_retriever()\n",
|
|
")\n",
|
|
"query = \"what is apache doris\"\n",
|
|
"resp = qa.run(query)\n",
|
|
"print(resp)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|