mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-19 14:01:50 +00:00
Previous PR #9353 has incomplete type checks and deprecation warnings. This PR will fix those type check and add deprecation warning to myscale vectorstore
456 lines
16 KiB
Python
456 lines
16 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import logging
|
|
from hashlib import sha1
|
|
from threading import Thread
|
|
from typing import Any, Dict, Iterable, List, Optional, Tuple
|
|
|
|
from langchain.docstore.document import Document
|
|
from langchain.embeddings.base import Embeddings
|
|
from langchain.pydantic_v1 import BaseSettings
|
|
from langchain.vectorstores.base import VectorStore
|
|
|
|
logger = logging.getLogger()
|
|
|
|
|
|
def has_mul_sub_str(s: str, *args: Any) -> bool:
|
|
"""
|
|
Check if a string contains multiple substrings.
|
|
Args:
|
|
s: string to check.
|
|
*args: substrings to check.
|
|
|
|
Returns:
|
|
True if all substrings are in the string, False otherwise.
|
|
"""
|
|
for a in args:
|
|
if a not in s:
|
|
return False
|
|
return True
|
|
|
|
|
|
class MyScaleSettings(BaseSettings):
|
|
"""MyScale client configuration.
|
|
|
|
Attribute:
|
|
myscale_host (str) : An URL to connect to MyScale backend.
|
|
Defaults to 'localhost'.
|
|
myscale_port (int) : URL port to connect with HTTP. Defaults to 8443.
|
|
username (str) : Username to login. Defaults to None.
|
|
password (str) : Password to login. Defaults to None.
|
|
index_type (str): index type string.
|
|
index_param (dict): index build parameter.
|
|
database (str) : Database name to find the table. Defaults to 'default'.
|
|
table (str) : Table name to operate on.
|
|
Defaults to 'vector_table'.
|
|
metric (str) : Metric to compute distance,
|
|
supported are ('L2', 'Cosine', 'IP'). Defaults to 'Cosine'.
|
|
column_map (Dict) : Column type map to project column name onto langchain
|
|
semantics. Must have keys: `text`, `id`, `vector`,
|
|
must be same size to number of columns. For example:
|
|
.. code-block:: python
|
|
|
|
{
|
|
'id': 'text_id',
|
|
'vector': 'text_embedding',
|
|
'text': 'text_plain',
|
|
'metadata': 'metadata_dictionary_in_json',
|
|
}
|
|
|
|
Defaults to identity map.
|
|
|
|
"""
|
|
|
|
host: str = "localhost"
|
|
port: int = 8443
|
|
|
|
username: Optional[str] = None
|
|
password: Optional[str] = None
|
|
|
|
index_type: str = "MSTG"
|
|
index_param: Optional[Dict[str, str]] = None
|
|
|
|
column_map: Dict[str, str] = {
|
|
"id": "id",
|
|
"text": "text",
|
|
"vector": "vector",
|
|
"metadata": "metadata",
|
|
}
|
|
|
|
database: str = "default"
|
|
table: str = "langchain"
|
|
metric: str = "Cosine"
|
|
|
|
def __getitem__(self, item: str) -> Any:
|
|
return getattr(self, item)
|
|
|
|
class Config:
|
|
env_file = ".env"
|
|
env_prefix = "myscale_"
|
|
env_file_encoding = "utf-8"
|
|
|
|
|
|
class MyScale(VectorStore):
|
|
"""`MyScale` vector store.
|
|
|
|
You need a `clickhouse-connect` python package, and a valid account
|
|
to connect to MyScale.
|
|
|
|
MyScale can not only search with simple vector indexes.
|
|
It also supports a complex query with multiple conditions,
|
|
constraints and even sub-queries.
|
|
|
|
For more information, please visit
|
|
[myscale official site](https://docs.myscale.com/en/overview/)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embedding: Embeddings,
|
|
config: Optional[MyScaleSettings] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""MyScale Wrapper to LangChain
|
|
|
|
embedding (Embeddings):
|
|
config (MyScaleSettings): Configuration to MyScale Client
|
|
Other keyword arguments will pass into
|
|
[clickhouse-connect](https://docs.myscale.com/)
|
|
"""
|
|
try:
|
|
from clickhouse_connect import get_client
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import clickhouse connect python package. "
|
|
"Please install it with `pip install clickhouse-connect`."
|
|
)
|
|
try:
|
|
from tqdm import tqdm
|
|
|
|
self.pgbar = tqdm
|
|
except ImportError:
|
|
# Just in case if tqdm is not installed
|
|
self.pgbar = lambda x: x
|
|
super().__init__()
|
|
if config is not None:
|
|
self.config = config
|
|
else:
|
|
self.config = MyScaleSettings()
|
|
assert self.config
|
|
assert self.config.host and self.config.port
|
|
assert (
|
|
self.config.column_map
|
|
and self.config.database
|
|
and self.config.table
|
|
and self.config.metric
|
|
)
|
|
for k in ["id", "vector", "text", "metadata"]:
|
|
assert k in self.config.column_map
|
|
assert self.config.metric.upper() in ["IP", "COSINE", "L2"]
|
|
if self.config.metric in ["ip", "cosine", "l2"]:
|
|
logger.warning(
|
|
"Lower case metric types will be deprecated "
|
|
"the future. Please use one of ('IP', 'Cosine', 'L2')"
|
|
)
|
|
|
|
# initialize the schema
|
|
dim = len(embedding.embed_query("try this out"))
|
|
|
|
index_params = (
|
|
", " + ",".join([f"'{k}={v}'" for k, v in self.config.index_param.items()])
|
|
if self.config.index_param
|
|
else ""
|
|
)
|
|
schema_ = f"""
|
|
CREATE TABLE IF NOT EXISTS {self.config.database}.{self.config.table}(
|
|
{self.config.column_map['id']} String,
|
|
{self.config.column_map['text']} String,
|
|
{self.config.column_map['vector']} Array(Float32),
|
|
{self.config.column_map['metadata']} JSON,
|
|
CONSTRAINT cons_vec_len CHECK length(\
|
|
{self.config.column_map['vector']}) = {dim},
|
|
VECTOR INDEX vidx {self.config.column_map['vector']} \
|
|
TYPE {self.config.index_type}(\
|
|
'metric_type={self.config.metric}'{index_params})
|
|
) ENGINE = MergeTree ORDER BY {self.config.column_map['id']}
|
|
"""
|
|
self.dim = dim
|
|
self.BS = "\\"
|
|
self.must_escape = ("\\", "'")
|
|
self._embeddings = embedding
|
|
self.dist_order = (
|
|
"ASC" if self.config.metric.upper() in ["COSINE", "L2"] else "DESC"
|
|
)
|
|
|
|
# Create a connection to myscale
|
|
self.client = get_client(
|
|
host=self.config.host,
|
|
port=self.config.port,
|
|
username=self.config.username,
|
|
password=self.config.password,
|
|
**kwargs,
|
|
)
|
|
self.client.command("SET allow_experimental_object_type=1")
|
|
self.client.command(schema_)
|
|
|
|
@property
|
|
def embeddings(self) -> Embeddings:
|
|
return self._embeddings
|
|
|
|
def escape_str(self, value: str) -> str:
|
|
return "".join(f"{self.BS}{c}" if c in self.must_escape else c for c in value)
|
|
|
|
def _build_istr(self, transac: Iterable, column_names: Iterable[str]) -> str:
|
|
ks = ",".join(column_names)
|
|
_data = []
|
|
for n in transac:
|
|
n = ",".join([f"'{self.escape_str(str(_n))}'" for _n in n])
|
|
_data.append(f"({n})")
|
|
i_str = f"""
|
|
INSERT INTO TABLE
|
|
{self.config.database}.{self.config.table}({ks})
|
|
VALUES
|
|
{','.join(_data)}
|
|
"""
|
|
return i_str
|
|
|
|
def _insert(self, transac: Iterable, column_names: Iterable[str]) -> None:
|
|
_i_str = self._build_istr(transac, column_names)
|
|
self.client.command(_i_str)
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
batch_size: int = 32,
|
|
ids: Optional[Iterable[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
ids: Optional list of ids to associate with the texts.
|
|
batch_size: Batch size of insertion
|
|
metadata: Optional column data to be inserted
|
|
|
|
Returns:
|
|
List of ids from adding the texts into the vectorstore.
|
|
|
|
"""
|
|
# Embed and create the documents
|
|
ids = ids or [sha1(t.encode("utf-8")).hexdigest() for t in texts]
|
|
colmap_ = self.config.column_map
|
|
|
|
transac = []
|
|
column_names = {
|
|
colmap_["id"]: ids,
|
|
colmap_["text"]: texts,
|
|
colmap_["vector"]: map(self._embeddings.embed_query, texts),
|
|
}
|
|
metadatas = metadatas or [{} for _ in texts]
|
|
column_names[colmap_["metadata"]] = map(json.dumps, metadatas)
|
|
assert len(set(colmap_) - set(column_names)) >= 0
|
|
keys, values = zip(*column_names.items())
|
|
try:
|
|
t = None
|
|
for v in self.pgbar(
|
|
zip(*values), desc="Inserting data...", total=len(metadatas)
|
|
):
|
|
assert len(v[keys.index(self.config.column_map["vector"])]) == self.dim
|
|
transac.append(v)
|
|
if len(transac) == batch_size:
|
|
if t:
|
|
t.join()
|
|
t = Thread(target=self._insert, args=[transac, keys])
|
|
t.start()
|
|
transac = []
|
|
if len(transac) > 0:
|
|
if t:
|
|
t.join()
|
|
self._insert(transac, keys)
|
|
return [i for i in ids]
|
|
except Exception as e:
|
|
logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
|
|
return []
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls,
|
|
texts: Iterable[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[Dict[Any, Any]]] = None,
|
|
config: Optional[MyScaleSettings] = None,
|
|
text_ids: Optional[Iterable[str]] = None,
|
|
batch_size: int = 32,
|
|
**kwargs: Any,
|
|
) -> MyScale:
|
|
"""Create Myscale wrapper with existing texts
|
|
|
|
Args:
|
|
texts (Iterable[str]): List or tuple of strings to be added
|
|
embedding (Embeddings): Function to extract text embedding
|
|
config (MyScaleSettings, Optional): Myscale configuration
|
|
text_ids (Optional[Iterable], optional): IDs for the texts.
|
|
Defaults to None.
|
|
batch_size (int, optional): Batchsize when transmitting data to MyScale.
|
|
Defaults to 32.
|
|
metadata (List[dict], optional): metadata to texts. Defaults to None.
|
|
Other keyword arguments will pass into
|
|
[clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api)
|
|
Returns:
|
|
MyScale Index
|
|
"""
|
|
ctx = cls(embedding, config, **kwargs)
|
|
ctx.add_texts(texts, ids=text_ids, batch_size=batch_size, metadatas=metadatas)
|
|
return ctx
|
|
|
|
def __repr__(self) -> str:
|
|
"""Text representation for myscale, prints backends, username and schemas.
|
|
Easy to use with `str(Myscale())`
|
|
|
|
Returns:
|
|
repr: string to show connection info and data schema
|
|
"""
|
|
_repr = f"\033[92m\033[1m{self.config.database}.{self.config.table} @ "
|
|
_repr += f"{self.config.host}:{self.config.port}\033[0m\n\n"
|
|
_repr += f"\033[1musername: {self.config.username}\033[0m\n\nTable Schema:\n"
|
|
_repr += "-" * 51 + "\n"
|
|
for r in self.client.query(
|
|
f"DESC {self.config.database}.{self.config.table}"
|
|
).named_results():
|
|
_repr += (
|
|
f"|\033[94m{r['name']:24s}\033[0m|\033[96m{r['type']:24s}\033[0m|\n"
|
|
)
|
|
_repr += "-" * 51 + "\n"
|
|
return _repr
|
|
|
|
def _build_qstr(
|
|
self, q_emb: List[float], topk: int, where_str: Optional[str] = None
|
|
) -> str:
|
|
q_emb_str = ",".join(map(str, q_emb))
|
|
if where_str:
|
|
where_str = f"PREWHERE {where_str}"
|
|
else:
|
|
where_str = ""
|
|
|
|
q_str = f"""
|
|
SELECT {self.config.column_map['text']},
|
|
{self.config.column_map['metadata']}, dist
|
|
FROM {self.config.database}.{self.config.table}
|
|
{where_str}
|
|
ORDER BY distance({self.config.column_map['vector']}, [{q_emb_str}])
|
|
AS dist {self.dist_order}
|
|
LIMIT {topk}
|
|
"""
|
|
return q_str
|
|
|
|
def similarity_search(
|
|
self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any
|
|
) -> List[Document]:
|
|
"""Perform a similarity search with MyScale
|
|
|
|
Args:
|
|
query (str): query string
|
|
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
|
|
where_str (Optional[str], optional): where condition string.
|
|
Defaults to None.
|
|
|
|
NOTE: Please do not let end-user to fill this and always be aware
|
|
of SQL injection. When dealing with metadatas, remember to
|
|
use `{self.metadata_column}.attribute` instead of `attribute`
|
|
alone. The default name for it is `metadata`.
|
|
|
|
Returns:
|
|
List[Document]: List of Documents
|
|
"""
|
|
return self.similarity_search_by_vector(
|
|
self._embeddings.embed_query(query), k, where_str, **kwargs
|
|
)
|
|
|
|
def similarity_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
where_str: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Perform a similarity search with MyScale by vectors
|
|
|
|
Args:
|
|
query (str): query string
|
|
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
|
|
where_str (Optional[str], optional): where condition string.
|
|
Defaults to None.
|
|
|
|
NOTE: Please do not let end-user to fill this and always be aware
|
|
of SQL injection. When dealing with metadatas, remember to
|
|
use `{self.metadata_column}.attribute` instead of `attribute`
|
|
alone. The default name for it is `metadata`.
|
|
|
|
Returns:
|
|
List[Document]: List of (Document, similarity)
|
|
"""
|
|
q_str = self._build_qstr(embedding, k, where_str)
|
|
try:
|
|
return [
|
|
Document(
|
|
page_content=r[self.config.column_map["text"]],
|
|
metadata=r[self.config.column_map["metadata"]],
|
|
)
|
|
for r in self.client.query(q_str).named_results()
|
|
]
|
|
except Exception as e:
|
|
logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
|
|
return []
|
|
|
|
def similarity_search_with_relevance_scores(
|
|
self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Perform a similarity search with MyScale
|
|
|
|
Args:
|
|
query (str): query string
|
|
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
|
|
where_str (Optional[str], optional): where condition string.
|
|
Defaults to None.
|
|
|
|
NOTE: Please do not let end-user to fill this and always be aware
|
|
of SQL injection. When dealing with metadatas, remember to
|
|
use `{self.metadata_column}.attribute` instead of `attribute`
|
|
alone. The default name for it is `metadata`.
|
|
|
|
Returns:
|
|
List[Document]: List of documents most similar to the query text
|
|
and cosine distance in float for each.
|
|
Lower score represents more similarity.
|
|
"""
|
|
q_str = self._build_qstr(self._embeddings.embed_query(query), k, where_str)
|
|
try:
|
|
return [
|
|
(
|
|
Document(
|
|
page_content=r[self.config.column_map["text"]],
|
|
metadata=r[self.config.column_map["metadata"]],
|
|
),
|
|
r["dist"],
|
|
)
|
|
for r in self.client.query(q_str).named_results()
|
|
]
|
|
except Exception as e:
|
|
logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
|
|
return []
|
|
|
|
def drop(self) -> None:
|
|
"""
|
|
Helper function: Drop data
|
|
"""
|
|
self.client.command(
|
|
f"DROP TABLE IF EXISTS {self.config.database}.{self.config.table}"
|
|
)
|
|
|
|
@property
|
|
def metadata_column(self) -> str:
|
|
return self.config.column_map["metadata"]
|