mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-21 14:43:07 +00:00
…s and Opensearch Semantic Cache
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
235 lines
6.4 KiB
Plaintext
235 lines
6.4 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "raw",
|
|
"id": "fbc66410",
|
|
"metadata": {
|
|
"vscode": {
|
|
"languageId": "raw"
|
|
}
|
|
},
|
|
"source": [
|
|
"---\n",
|
|
"sidebar_label: Bedrock\n",
|
|
"---"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "bf733a38-db84-4363-89e2-de6735c37230",
|
|
"metadata": {},
|
|
"source": [
|
|
"# ChatBedrock\n",
|
|
"\n",
|
|
">[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that offers a choice of \n",
|
|
"> high-performing foundation models (FMs) from leading AI companies like `AI21 Labs`, `Anthropic`, `Cohere`, \n",
|
|
"> `Meta`, `Stability AI`, and `Amazon` via a single API, along with a broad set of capabilities you need to \n",
|
|
"> build generative AI applications with security, privacy, and responsible AI. Using `Amazon Bedrock`, \n",
|
|
"> you can easily experiment with and evaluate top FMs for your use case, privately customize them with \n",
|
|
"> your data using techniques such as fine-tuning and `Retrieval Augmented Generation` (`RAG`), and build \n",
|
|
"> agents that execute tasks using your enterprise systems and data sources. Since `Amazon Bedrock` is \n",
|
|
"> serverless, you don't have to manage any infrastructure, and you can securely integrate and deploy \n",
|
|
"> generative AI capabilities into your applications using the AWS services you are already familiar with.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "d51edc81",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Note: you may need to restart the kernel to use updated packages.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%pip install --upgrade --quiet langchain-aws"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain_aws import ChatBedrock\n",
|
|
"from langchain_core.messages import HumanMessage"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"chat = ChatBedrock(\n",
|
|
" model_id=\"anthropic.claude-3-sonnet-20240229-v1:0\",\n",
|
|
" model_kwargs={\"temperature\": 0.1},\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", additional_kwargs={'usage': {'prompt_tokens': 20, 'completion_tokens': 21, 'total_tokens': 41}}, response_metadata={'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0', 'usage': {'prompt_tokens': 20, 'completion_tokens': 21, 'total_tokens': 41}}, id='run-994f0362-0e50-4524-afad-3c4f5bb11328-0')"
|
|
]
|
|
},
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"messages = [\n",
|
|
" HumanMessage(\n",
|
|
" content=\"Translate this sentence from English to French. I love programming.\"\n",
|
|
" )\n",
|
|
"]\n",
|
|
"chat.invoke(messages)"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "a4a4f4d4",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Streaming\n",
|
|
"\n",
|
|
"To stream responses, you can use the runnable `.stream()` method."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"id": "d9e52838",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Voici la traduction en français :\n",
|
|
"\n",
|
|
"J'aime la programmation."
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"for chunk in chat.stream(messages):\n",
|
|
" print(chunk.content, end=\"\", flush=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c36575b3",
|
|
"metadata": {},
|
|
"source": [
|
|
"### LLM Caching with OpenSearch Semantic Cache\n",
|
|
"\n",
|
|
"Use OpenSearch as a semantic cache to cache prompts and responses and evaluate hits based on semantic similarity.\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "375d4e56",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.globals import set_llm_cache\n",
|
|
"from langchain_aws import BedrockEmbeddings, ChatBedrock\n",
|
|
"from langchain_community.cache import OpenSearchSemanticCache\n",
|
|
"from langchain_core.messages import HumanMessage\n",
|
|
"\n",
|
|
"bedrock_embeddings = BedrockEmbeddings(\n",
|
|
" model_id=\"amazon.titan-embed-text-v1\", region_name=\"us-east-1\"\n",
|
|
")\n",
|
|
"\n",
|
|
"chat = ChatBedrock(\n",
|
|
" model_id=\"anthropic.claude-3-haiku-20240307-v1:0\", model_kwargs={\"temperature\": 0.5}\n",
|
|
")\n",
|
|
"\n",
|
|
"# Enable LLM cache. Make sure OpenSearch is set up and running. Update URL accordingly.\n",
|
|
"set_llm_cache(\n",
|
|
" OpenSearchSemanticCache(\n",
|
|
" opensearch_url=\"http://localhost:9200\", embedding=bedrock_embeddings\n",
|
|
" )\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "bb5d25bb",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%%time\n",
|
|
"# The first time, it is not yet in cache, so it should take longer\n",
|
|
"messages = [HumanMessage(content=\"tell me about Amazon Bedrock\")]\n",
|
|
"response_text = chat.invoke(messages)\n",
|
|
"\n",
|
|
"print(response_text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6cfb3086",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%%time\n",
|
|
"# The second time, while not a direct hit, the question is semantically similar to the original question,\n",
|
|
"# so it uses the cached result!\n",
|
|
"\n",
|
|
"messages = [HumanMessage(content=\"what is amazon bedrock\")]\n",
|
|
"response_text = chat.invoke(messages)\n",
|
|
"\n",
|
|
"print(response_text)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.4"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|