# Added SmartGPT workflow by providing SmartLLM wrapper around LLMs Edit: As @hwchase17 suggested, this should be a chain, not an LLM. I have adapted the PR. It is used like this: ``` from langchain.prompts import PromptTemplate from langchain.chains import SmartLLMChain from langchain.chat_models import ChatOpenAI hard_question = "I have a 12 liter jug and a 6 liter jug. I want to measure 6 liters. How do I do it?" hard_question_prompt = PromptTemplate.from_template(hard_question) llm = ChatOpenAI(model_name="gpt-4") prompt = PromptTemplate.from_template(hard_question) chain = SmartLLMChain(llm=llm, prompt=prompt, verbose=True) chain.run({}) ``` Original text: Added SmartLLM wrapper around LLMs to allow for SmartGPT workflow (as in https://youtu.be/wVzuvf9D9BU). SmartLLM can be used wherever LLM can be used. E.g: ``` smart_llm = SmartLLM(llm=OpenAI()) smart_llm("What would be a good company name for a company that makes colorful socks?") ``` or ``` smart_llm = SmartLLM(llm=OpenAI()) prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) chain = LLMChain(llm=smart_llm, prompt=prompt) chain.run("colorful socks") ``` SmartGPT consists of 3 steps: 1. Ideate - generate n possible solutions ("ideas") to user prompt 2. Critique - find flaws in every idea & select best one 3. Resolve - improve upon best idea & return it Fixes #4463 ## Who can review? Community members can review the PR once tests pass. Tag maintainers/contributors who might be interested: - @hwchase17 - @agola11 Twitter: [@UmerHAdil](https://twitter.com/@UmerHAdil) | Discord: RicChilligerDude#7589 --------- Co-authored-by: Bagatur <baskaryan@gmail.com> |
||
---|---|---|
.devcontainer | ||
.github | ||
docs | ||
libs | ||
.gitattributes | ||
.gitignore | ||
.gitmodules | ||
.readthedocs.yaml | ||
CITATION.cff | ||
LICENSE | ||
Makefile | ||
MIGRATE.md | ||
poetry.lock | ||
poetry.toml | ||
pyproject.toml | ||
README.md |
🦜️🔗 LangChain
⚡ Building applications with LLMs through composability ⚡
Looking for the JS/TS version? Check out LangChain.js.
Production Support: As you move your LangChains into production, we'd love to offer more hands-on support. Fill out this form to share more about what you're building, and our team will get in touch.
🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23
In an effort to make langchain
leaner and safer, we are moving select chains to langchain_experimental
.
This migration has already started, but we are remaining backwards compatible until 7/28.
On that date, we will remove functionality from langchain
.
Read more about the motivation and the progress here.
Read how to migrate your code here.
Quick Install
pip install langchain
or
pip install langsmith && conda install langchain -c conda-forge
🤔 What is this?
Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
This library aims to assist in the development of those types of applications. Common examples of these applications include:
❓ Question Answering over specific documents
- Documentation
- End-to-end Example: Question Answering over Notion Database
💬 Chatbots
- Documentation
- End-to-end Example: Chat-LangChain
🤖 Agents
- Documentation
- End-to-end Example: GPT+WolframAlpha
📖 Documentation
Please see here for full documentation on:
- Getting started (installation, setting up the environment, simple examples)
- How-To examples (demos, integrations, helper functions)
- Reference (full API docs)
- Resources (high-level explanation of core concepts)
🚀 What can this help with?
There are six main areas that LangChain is designed to help with. These are, in increasing order of complexity:
📃 LLMs and Prompts:
This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.
🔗 Chains:
Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
📚 Data Augmented Generation:
Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
🤖 Agents:
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
🧠 Memory:
Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
🧐 Evaluation:
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
For more information on these concepts, please see our full documentation.
💁 Contributing
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
For detailed information on how to contribute, see here.